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Oblique frozen modes in periodic layered media
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We study the classical scattering problem of a plane electromagnetic wave incident on the surface of
semi-infinite periodic stratified media incorporating anisotropic dielectric layers with special oblique orienta-
tion of the anisotropy axes. We demonstrate that an obliquely incident light, upon entering the periodic slab,
gets converted into an abnormal grazing mode with huge amplitude and zero normal component of the group
velocity. This mode cannot be represented as a superposition of extended and evanescent contributions. In-
stead, it is related to a genefaon-Bloch Floquet eigenmode with the amplitude diverging linearly with the
distance from the slab boundary. Remarkably, the slab reflectivity in such a situation can be very low, which
means an almost 100% conversion of the incident light intoattially frozen modevith the electromagnetic
energy density exceeding that of the incident wave by several orders of magnitude. The effect can be realized
at any desirable frequency, including optical and UV frequency range. The only essential physical requirement
is the presence of dielectric layers with proper oblique orientation of the anisotropy axes. Some practical
aspects of this phenomenon are considered.
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I. INTRODUCTION oblique orientation of the anisotropic axis. A simple example

) ] o . _of such an array is presented in Fig. 2. We will show that

Electromagnetic properties of periodic stratified mediaynger certain physical conditions a monochromatic plane
have been a subject of extensive research for deo@#es \yaye incident on the semi-infinite slab is converted into an
for example, Refq.1-3], and references thereirOf particu-  5pnormal electromagnetic mode with huge amplitude and
lar interest has been the case of periodic sta@kse- nearly tangential energy density flux, as illustrated in Fig. 3.

dimensional ph_oton_lc crystalmad_e up of_IossIess dlel_ectrlc Such a wave will be referred to as thaially frozen mode
components with different refractive indices. Photonic crys-

tals with one-dimensional periodicity had been widely usedAFM)- The use of this term is justified because the normal
in optics long before the term “photonic crystals” was in- (axial) componentu, of the respective group velocity be-
vented. comes vanishingly small, while the amplitude of the AFM

Let us look at the classical problem of a plane electromag®@n €xceed the amplitude of the incident plane wave by sev-
netic wave incident on the surface of semi-infinite plane-eral orders of magnitude.
parallel periodic array, as shown in Fig. 1. The well-known The group velocityu of the AFM is parallel to the semi-
effects of the slab periodicity are the followin@) The pos- infinite slab boundary and, therefore, the magnitude of the

diation is reflected by the slab, regardless of the angle o

incidencejii) the possibility of negative refraction, when the {qu Sris overwhelrpmgly larger than thf magrytude of the
tangential component of the energy fléxof the transmitted normal component:%)z. But, although ST_)Z<(ST_)i ! the
wave is antiparallel to that of the incident wau@j) dra-  normal component%), of the energy density flux inside the
matic slowdown of the transmitted wave near photonic band

edge frequency, where the normal component of the trans- Semi-infinite

mitted wave group velocity vanishes along with the respec- periodic stac

tive energy qux§T. An extensive discussion on the subject :
and numerous references can be found in Refs13. All : X
the above effects can occur even in the simplest case of a :

PRy S . LT . ) S \
semi-infinite periodic array of two isotropic dielectric mate R :
rials with different refractive indices, for example, glass and — = Z

air. The majority of known photonic crystals fall into this / T
S

category. The introduction afielectric anisotropy however,

can bring qualitatively new features to electromagnetic prop- I
erties of periodic stratified media and open up new opportu-

nities for practical applicationssee, for example, a recent

publication[14]). One of such phenomena is the subject of FiG. 1. The scattering problem for a semi-infinite periodic lay-

this work. ered mediumS,, Sg, andS; are the energy density fluxes of the
incident, reflected, and transmitted waves, respectively. The trans-
mitted waveWV ; is a superposition of two Bloch eigenmodes, each

Consider a semi-infinite periodic stack with at least one ofof which can be either extended or evanescent. Only extended
the constituents being an anisotropic dielectric material withmodes can transfer the energy in thdirection.

A. The axially frozen mode
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FIG. 2. Periodic layered structure with two layeksandB in a SI <

primitive cell L. The A layers(hatched are anisotropic with one of
the principle axes of the dielectric permittivity tensomaking an o ) ) )
oblique angle with the normalto the layers §,,# 0). TheB layers FIG. 3. An incident plane wave with unity energy density flux
are isotropic. The-z plane coincides with the mirror plama, of ~ @nd a certain angle of incidence is converted into the AFM with
the stack. / huge amplitude, tangential group velocity, and nearly tangential en-

ergy fluxS;. The normal componentsS(), and (S;), of the inci-

slab is still comparable with that of the incident plane wavedent and transmitted waves energy flux are comparable in magni-
in vacuum. This property persists even if the normal compotude.

nentu, of the wave group velocity inside the slab vanishes, o ) )
ie. in the vicinity of a photonic band eddat frequencies near

w=wy in Fig. 4a)], the transmittance of the semi-infinite
(S),>0 if u,=0. (1)  slabalways vanishes, along with the normal componguof
the wave group velocity.

The qualitative explanation for this is that the infinitesimally It turns out that at a given frequenay, the AFM regime

small value ofu, is offset by huge magnitude of the energy can occur only for a special direction of the incident plane
densityW in the AFM. As the result, the produatW, which ~ wave propagation

determines the normal componerﬁﬂ[Z of the energy flux, I
remains finite. The above behavior is totally different from No=nNo(wo)- ©)
what happens in the vicinity of a photonic band edge, wher
the normal component, of the wave group velocity van-
ishes too. Indeed, let us introduce the transmittanaad the

This special direction of incidence always makes an oblique
angle with the normat to the layers. To findi, for a given

reflectancep of a lossless semi-infinite slab wg Or, conversely, to findvg for a givenn,, one has to solve
the Maxwell equations in the periodic stratified medium.
(gT)Z (gR)Z This 'problem WiII.be addressed in Sec. III_. In Sec. |l we
r=1l-p=—5—, p=——>—. (2) consider the relation between the AFM regime and the sin-
(S)2 (S)2 gularity of the electromagnetic dispersion relation respon-

sible for such a peculiar behavior. If the frequengynd the

direction of incidence do not match explicitly as prescribed
ngy Eg. (3), the AFM regime will be somewhat smeared.

In line with Eq. (1), in the AFM regime the transmittance
remains significant and can be even close to unity, as sho
in an example in Fig. @). In other words, the incident plane
wave enters the slab with little reflectance, where it turns into
an abnormal AFM with an infinitesimally small normal com-
ponent of the group velocity, huge amplitude, and a huge LetW{(z) be the transmitted electromagnetic field inside
tangential component of the energy density flux. By contrastthe semi-infinite slab(the explicit definition of ¥'(z) is

B. The vicinity of the AFM regime

a) Transmittance vs.® b) Dispersion relation FIG. 4. (a) The transmittancer of periodic

semi-infinite slab vs frequency at fixed direction

n of the incidence. At the frequenay, of the
AFM, 7 is close to unity, which implies that the
incident wave almost completely gets converted
into the AFM. (b) The respective axial dispersion
relationw(k,) at fixed (,n,) from Eq.(12). At
k,=ko andw = w this spectral branch develops a
stationary inflection point{16) associated with
the AFM regime.wy, is the edge of the frequency
band for a giveni,,n,). The values ot andk
are expressed in units afL and 1L, respec-
tively.

5.8 Frequency gap 5.8 Frequency gap

Frequency ®
Frequency ®

Transmittance z component of quasimomentum
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a) Resulting field b) Extended component c) Evanescent component
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FIG. 5. Destructive interference of the extended and evanescent components of the resulting electromagtiogidiel semi-infinite
slab in close proximity of the AFM regiméda) the amplitudg ¥'1(2)|? of the resulting field(b) the amplitudg ¥ ,(z)|? of the extended
contribution, (c) the amplitudd ¥, (z)|? of the evanescent contribution. The amplitydg|? of the incident wave is unity. The distanze
from the slab boundary is expressed in unitd_of

given in Eqs.(38) and(88)]. It turns out that in the vicinity ~This relation together with the equality
of the AFM regime W1(2z) is a superposition of the extended

and evanescent Bloch eigenmodes ™ Uz
57 0= arctal?J— , (6)
1L

V(2)=Vel2) + V¥ (2), z>0, 4
involving the refraction angl@, yield

whereW,(z) is an extended mode with,>0, andW¥¢,(2)
is an evanescent mode with lkg>0. As shown in an ex- T br~|w— o |2’3—>O s woow @
ample in Fig. 5, both the contributions ®+(z) have huge 2 7 0 0
and nearly equal and opposite values near the slab boundary,
so that their superpositiotd) at z=0 is small enough to Hence, in the vicinity of the AFM regime, the transmitted
satisfy the boundary conditiof®0). As the distance from  (refracted electromagnetic wave can be viewed agrazing
the slab boundary increases, the evanescent componehpde The mostimportant and unique feature of this grazing
¥, (2) decays exponentially, while the amplitude of the ex-mode directly relates to the fact that the transmittanasf
tended component .,(z) remains constant and huge. As the the semi-infinite slab remains finite evenat o, [see, for
result, the field amplitudé¥ +(z)|? reaches its huge satura- example, Fig. 4)]. Indeed, letA; and A; be the cross-
tion value| W, at a certain distance from the slab boundary
[see Eqs(99), (100, and(101)]. Semi-infinite

When the direction of incidence tends to its critical

value ﬁo for a given frequencyn,, the respective saturation
value |¥.,|? of the AFM amplitude|¥(2)|? diverges as

In—no|~23. Conversely, when the frequeney tends to its

critical value wq for a given direction of incidencéo, the
saturation value of the AFM amplitude diverges as
|w—wo|~?2. In the real situation, of course, the AFM am-
plitude will be limited by such physical factors &% nonlin-
ear effects(ii) electromagnetic losse§ii) structural imper-
fections of the periodic arrayiv) finiteness of the slab
dimensions,(v) deviation of the incident radiation from a
perfect plane monochromatic wave.

Figure 6 gives a good qualitative picture of what really
happens in the vicinity of the AFM regime. Consider a wide
monochromatic beam of frequenayincident on the surface
of semiinfinite photonic slab. The direction of incidence g 6. Incident and transmittedefracted waves in the vicinity

no|lS, is chosen so that conditiaf8) of the AFM regime is  of the AFM regime. The reflected wave is not shownand ¢; are
satisfied atw= wq. As frequencyw tends tow, from either  the incidence and refraction angl&,andS; are the energy density
direction, the normal component, of the transmitted wave fluxes of the incident and transmitted waves. Both the energy den-
group velocity approaches zero, while the tangential composity and the energy density flux in the transmitted wave are much
nent JL remains finite larger than the respectlve values in the mmdem wave. However, the
total power transmitted by the refracted wave is smaller by factor
. . due to much smaller cross-section area of the nearly grazing trans-
U,~|o—wo|?*=0, u,—uUy as w—wy. (5  mitted wave.

036609-3



A. FIGOTIN AND I. VITEBSKIY

section areas of the incident and transmitt@dfracted
beams, respectively. Obliviously,

At cosb+
A, cosf,’ ®
Let us also introduce the quantities
U=AS, Ur=AS, 9)

PHYSICAL REVIEW E 68, 036609 (2003

of electromagnetic unidirectionalityn nonreciprocal mag-
netic photonic crystal§l15,16. In a unidirectional photonic
crystal, electromagnetic radiation of a certain frequeagy

can propagate with finite group veIociﬁHz only in one of

the two opposite directions, say, from right to left. The prob-
lem with the electromagnetic unidirectionality, though, is
that it essentially requires the presence of magnetic materials
with strong circular birefringencé~araday rotationand low
losses at the frequency range of interest. Such materials are

whereS, andS; are the energy density fluxes of the incidentreadily available at the microwave frequencies, but at the
and transmitted wavesl, andU are the total power trans- infrared and optical frequency ranges, finding appropriate

mitted by the incident and transmittédkfracted beams, re-
spectively. Expression@) and(9) imply that

Ur_Srcostr _(Sp;__

U~ Scost (S),

(10

magnetic materials is highly problematic. Thus, at frequen-
cies above 1% Hz, the electromagnetic unidirectionality
along with the respective nonreciprocal magnetic mechanism
of the frozen mode formation may prove to be impractical.
By contrast, the occurrence of AFMoes notrequire the
presence of magnetic or any other essentially dispersive

which is nothing more than a manifestation of the energycomponents in the periodic stack. Therefore, the AFM re-

conservation law. Finally, Eq(10), together with formula
(7), yield

C0s#6,
S1=7S —— ~|w—wy| ¥*—x as

w— Wy,
cosér 0

(11)

where we have taken into account thd&, cosé, is limited
(of the order of magnitude of unityas w— wq. By contrast,

gime can be realizedt any frequencies, including the infra-
red, optical, and even ultraviolet frequency ranges. The only
essential physical requirement is the presence of anisotropic
dielectric layers with proper orientation of the anisotropy
axes. An example of such an array is shown in Fig. 2.

In Sec. Il we establish the relation between the phenom-
enon of AFM and the electromagnetic dispersion relation of
the periodic layered medium. This allows us to formulate
strict and simple symmetry conditions for such a phenom-

in the vicinity of the photonic band edge the transmittance enon to occur, as well as to find out what kind of periodic

of the semi-infinite slab vanishes along with the energy denstratified media can exhibit the effect. Relevant theoretical

sity flux Sy of the transmittedrefracted wave. analysis based on the Maxwell equations in stratified media
Expressiong7) and (11) show that in the vicinity of the s carried out in Secs. IIl and IV. Finally, in Sec. V we dis-

AFM regime the transmitted wave behaves like a grazing:yss some practical aspects of the phenomenon.
mode with huge and nearly tangential energy density 8tix

and very small(compared to that of the incident beam
cross-section areéd;, so that the total poweld=A:S;
associated with the transmitted wave cannot exceed the total Now we establish the connection between the phenom-
powerU, of the incident wavel=7U,<U,. enon of AFM and the electromagnetic dispersion relation
The above gualitativ_e considera_tion is oqu \(alid on thew(g), E:(kx;kyukz) of the periodic stratified medium. In a
scales exceeding the siteof the unit cell(which is of the  yane.-parallel “stratified slab, the tangential components
order of magnitude of/ w) and more importantly, exceeding (ky k) of the Bloch wave vectok always coincide with

o ) Y )
the transitional distance + (Im ke,) frqm t.he slab bound ._those of the incident plane wave in Figs. 1, 3, and 6 while the
ary where the evanescent mode contribution to the resultmﬁ L .

ormal componenk, is different from that of the incident

electromagnetic fieldV1(z) is still significant. The latter : . . .
means that the width of both the incident and the refracted’2"<" To avoid confusion, in further consideration #reom

beam must be much larger thanif the above condition is Ponent of the Bloch wave vectdr inside the periodic slab
not met, we cannot treat the transmitted wave as a beam, ayll P& denoted ak without the subscripz, namely,
expression$7)—(11) do not apply. Instead, we would have to
use the explicit electrodynamic expressions¥of(z), such
as the asymptotic formulél01). Note that if the directiom ) ) ) .
of the incident wave propagation and the frequencyex- The val_ue_ofk is f_o_und by s_,olvmg th_e Maxwell equations in
actly matchcondition (3) for the AFM regime, the transmit- the periodic stratified medium for given and (kyky); k is
ted waveW(z) does not reduce to superpositioh) of ca- defined up to a multiple of 2/L, whereL is the period of
nonical Bloch eigenmodes. Instead, the AFM is described bjhe layered structure. _ _
a general Floquet eigenmode,,(z) from Eq. (80), which Consider now the frequenay as function ofk fqr fixed .
diverges inside the slab as until the nonlinear effects or (X«,ky). Atypical example of such a dependence is shown in
other limiting factors come into play. The related mathemati-Fig- 7(a). Alarge gap at the lowest frequencies is determined
cal analysis is provided in Secs. Il and IV. by the value of theeﬁxed tangential componerkg,k,) of

In some respects, the remarkable behavior of the AFM ighe quasimomenturk. This gap vanishes in the case of nor-
similar to that of the frozen mode related to the phenomenomal incidence, wherk,=k,=0. An alternative and more

II. DISPERSION RELATION WITH THE AFM

inside periodic stack: k= (kyky k).
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a)k ,k —-const b)n ,n —- const
Xy Xy

- o

| ?\ - 5 /
'\ / FIG. 7. The axial dispersion relation of aniso-
- tropic periodic stack in Fig. 2a) w(k,) for fixed

//\.

3 8
> > i
3 | S— — g J valugs & ky) ofﬁthe tangential cgmponents of
% % quasimomentunk; (b) w(k,) for fixed values
:h: Ii._, \ (ny,ny), defining the direction of incidence. In
o the case of normal incidence, there would be no
e —— s o] difference betweefia) and (b).
1 1 4
-3.14 0 3.14 -3.14 0 3.14
z—component of quasimomentum z—-component of quasimomentum

convenient representation for the dispersion relation is prerepresenting the tangential components of the group velocity,
sented in Fig. ), where the plot ofw(k) is obtained for may not be zeros dt=K,.
fixed (n,,ny) based on Notice that instead of Eq13) one can use another defi-

nition of the stationary inflection point
. o . Jo P w
The pair of valuesr, ,n,) coincide with the tangential com- K =0, |—
ponents of the unit vecton defining the direction of the MMyl k=i ok nonyl
incident plane wave propagation. The dependen@e) for
fixed (ny,n,) or for fixed (ki ,k,) will be referred to as the &)
axial dispersion relation
Suppose that fok=k, and o =w=w(K,), one of the % MYlk=k,
spectral branches (k) develops a stationary inflection point
for given (Ky,ky) = (Kox,Koy), i.€., The partial derivatives in Eq916) are taken at constant
(ny,ny), rather than at constank,(,k,). Observe that defi-
(aw (azw) nitions (13) and(16) are equivalent, and we will use both of
_ :0- -
ﬁk) ’ k2
Ky Ky k=i, 14 ke ky

(ny,ny) =(cky/w,cky/w). (12

#0. (16)

=0; them.
In Fig. 4(b) we reproduced an enlarged fragment of the
upper spectral branch of the axial dispersion relation in Fig.
7(b). For the chosenr(,,n,), this branch develops a station-
#0. (13)  ary inflection point(16) at w=w, andk=k,. The extended
K=k, Bloch eigenmode withw=w, and k=k,, associated with
the stationary inflection point, turns out to be directly related
The value to the AFM.
In Secs. Il and 1V, based on the Maxwell equations, we
(&w) prove that singularity16) [or, equivalently, Eq(13)] indeed
uZ
k

k=i,

=2 (14 leads to the very distinct AFM regime in the semi-infinite
ky Ky periodic stack. We also show that a necessary condition for
such a singularity and, therefore, a necessary condition for
in Eq. (13) is the axial component of the group velocity, the AFM existence is the following property of the axial

which vanishes ak= ko Observe that dispersion relation of the periodic stack:
Jw Jw w(kX!kylk)iw(kxakyu_k)
ux—(&—kx) and u,= ‘9_ky>kk (15

or, equivalently,
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w(ng,n, ,K)#o(n,,n,,—k). 1 Al A% B

(xy) (x y ) (7) //\ /\\\ {/ < /’;/, N

X Z ZN\ Y R
This property will be referred to as thaial spectral asym- N 7 N\
metry Evidently, the axial dispersion relations presented in 7 N NN
Fig. 7 satisfy this criterion. Leaving the proof of the above / ‘\\\\ /NN \ // N
statements to Sec. lll, let us look at the constraints imposed Y 7 / ZN Z N
by criterion (17) on the geometry and composition of the N ;/\ ZNBZ\

periodic stack. L :

A. Conditions for the axial spectral asymmetry FIG. 8. Periodic stack composed of anisotropic laykts and

. . - . A2, which are the mirror images of each other, and isotropic layers
First of all notice that a periodic array would definitely B. This stack has axially symmetric dispersion relation and does not

have anaxially symmetriadispersion relation support the AFM regime. This is true even if tBelayers are re-
(K Ky K) = (K Ky, —K) moved.
or, equivalently Application of criterion (21) to different periodic stacks
Condition (21) for the axial spectral asymmetry imposes
w(ny,ny,K)=w(n,,ny,—k), (18  certain restrictions on the geometry and composition of the
periodic stratified medium, as well as on the direction of the
if the symmetry grougG of the periodic stratified medium incident wave propagation.

includes any of the following two symmetry operations: a. Restrictions on the geometry and composition of the
periodic stack.First of all, observe that a common periodic
m,,2,=2,XR, (19) stack made up dbotropicdielectric components with differ-

ent refractive indices always has axially symmetric disper-
sion relation(18), no matter how complicated the periodic
array is or how many different isotropic materials are in-
volved. To prove this, it suffices to note that such a stack
always supports the symmetry operation 2

In fact, the symmetry operation, holds in the more gen-
eral case when all the layers are either isotropic or have a
2, (ky Ky k)= (ky Ky, —K), purely in-plane anisotropy

wherem, is the mirror plane parallel to the layers, & the
twofold rotation about the axis, andR is the time reversal
operation. Indeed, since, X,k ,k)=(—k,—ky,k) and
R(ky Ky, K)=(—ky,—k,,—Kk), we have

which implies relation(18) for arbitrary K, ,k,). The same

is true for the mirror planen,, Exx &xy O

E= gxy syy 0 . (23)
m,(Ky Ky, K) = (ky,ky, —K). 0O o

€2z

Consequently, a necessary condition for the axial spectral . )
asymmetry(17) of a periodic stack is the absence of the Obviously, the in-plane anisotrof23) does not remove the

symmetry operationél9), i.e., symmetry operation 2and, therefore, propert{l8) of the
axial spectral symmetry holds in this case. Thus, we can state
meG and Z¢G. (20) that in order to display the axial spectral asymmetry, the

periodic stack must include at least one anisotropic compo-
nent, either uniaxial or biaxial. In addition, one of the prin-

ciple axes of the respective dielectric permittivity tensor
must make an oblique angle with the normal to the layers,
which means thait least one of the two componeitg and
&y, of the respective dielectric tensor must be nonzero

The above requirement gives us a simple and useful idea
i . on what kind of periodic stratified media can support the
Note, that theaxial spectral symmetry18) is different  5yia| spectral asymmetry and the AFM regime. But this is

In reciprocal (nonmagnetic media, where by definitiofiR
e G, instead of Eq(20), one can use the following require-
ment:

m,¢G and 2«¢G. (21

from thebulk spectral symmetry not a substitute for the stronger symmetry criteri@@) or
(21). For example, although the periodic stack in Fig. 8 in-
o(Kky Ky ,K)=o(—ky,—ky,—K). (220 cludes theA layers identical to those in Fig. 2, this stack does

not meet criterion(20) for the axial spectral asymmetry. In-
For example, the space inversibrand/or the time reversal deed, the stack in Fig. 8 supports the mirror plang,
R, if present inG, ensure the bulk spectral symmet32),  which, according to expressidi9), ensures the axial spec-
but neitherl nor R ensures the axial spectral symmetty).  tral symmetry.
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a)n =n =0 b) n_=0, n =0.45
X 'y X y

b W ; :

Frequency »
w
H
H

-3.14 0 3.14 -3.14 0 3.14 FIG. 9. Axial dispersion relatiorw(k) for
fixed (n,,n,) for the periodic array in Fig. 2. The
d) n_=n =0.45 AFM regime can occur only ifi,#0 andn,#0
x 'y
— [the casgd)].
> ol N~ /
8 ] \
& g3 \
> T N\,
Q 9 P add .
[T w
1 1
-3.14 0 3.14 -3.14 0 3.14
z—component of wave vector z—component of wave vector

b. Restriction on the direction of incident wave propaga-als used, while a specific value ef within the range can be
tion. Consider now an important particular case=k,=0 of  selected by the direction of the light incidence.
the normal incidence. Criteriol7) reduces now to the

simple requirement B. Periodic stack with two layers in unit cell

w(K)# o(—K), (24 The simplest and the most practical example of a periodic
stack supporting the axial spectral asymme(ly’) and,
[wherek=(0,0k)] of the bulk spectral asymmetry, which is thereby, the AFM regime is shown in Fig. 2. It is made up of
prohibited in nonmagnetic photonic crystals due to the timeanisotropicA layers alternated with isotropiB layers. The
reversal symmetry. Therefore, in the nonmagnetic case, weespective dielectric permittivity tensors are
have the following additional condition for the axial spectral
asymmetry: exx 0 &y eg 0 O

;;A: 0 Eyy 0 ;;B: 0 eg 0. (26

k, = VkZ+K2#0, (25) 0 ’

Eyz €55 0 0 ep
implying that the AFM cannot be excited in a honmagnetic N
semi-infinite stack by a normally incident plane wave, i.e.,FOr simplicity, we assume
the incident angle must be oblique R L
Conditions(21) and(25) may not be necessary in the case ma=pp=1. (27)
of nonreciprocal magnetic stacksee the details in Ref.
[15]). But as we mentioned earlier, at frequencies abovd he stack in Fig. 2 has the monoclinic symmetry
10'? Hz, the nonreciprocal effects in common nonconduct-
ing materials are negligible. Therefore, in order to have a 2y/my (28)
robust AFM regime in the infrared or optical frequency
range, we must satisfy both requireme24) and (25), re- with the mirror planem, normal to they axis. Such a sym-
gardless of whether or not nonreciprocal magnetic material§'€try is compatible with the necessary conditi@a) for the
are involved. AFM existence. But as we will see below, symmet&8)
As soon as the above conditions are met, one can alwaymposes additional constraints on the directionf the inci-
achieve the AFM regime at any desirable frequeaoyithin dent wave propagation.
a certain frequency rangkw. The frequency rangd o is In Fig. 9 we show the axial dispersion relatian{k) of
determined by the stack geometry and the dielectric materithis periodic array, computed for four different directions
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(ny,ny) of incident wave propagation. These four casesspectral asymmetry. In addition, the Bloch eigenmodes now
cover all the possibilities, different in terms of symmetry. are of the same symmetf23]—neither TE, nor TM. This is
In case(a) of normal incidence, whem,=n,=0, the exactly the case when the AFM regime can be achieved at
dispersion relation is axially symmetric, as must be the caseome frequencies by proper choice of the incident angle. For
with any reciprocal periodic stratified mediufsee the ex- instance, if we impose the equality= n, and change the
planation after Eq(24)]. incident angle only, it turns out that every single spectral
In the casdb), whenn,=0 andn,#0, the two necessary branch at some point develops a stationary inflection point
conditions(21) and(25) for the axial spectral asymmetry are (16) and, thereby, displays the AFM at the respective fre-
met. Yet, those conditions prove not to be sufficient. Indeedguency. If we want the AFM at a specified frequensy,
if n,=0, either of the symmetry operations then we will have to adjust both, andn, .

2, and my=m xR (29 ll. ELECTRODYNAMICS OF THE AXIALLY

_ _ FROZEN MODE
imposes the relation
A. Reduced Maxwell equations

@(0ky k)= w(0ky,—k), (30 We start with the classical Maxwell equations for time-

R . , ) harmonic fields in nonconducting media
which implies the axial spectral symmetry. Neither stationary

inflection point, nor AFM can occur in this case. I R - ORI

In case(c), whenn,#0 andn,=0, the situation is more VXE(r)=iB(r), VXH(r)=-i-D(), (34
complicated. The quasimomentan lies now in thex-z
plane, which coincides with the mirror plang, . Therefore, where
every Bloch eigenmod® ;(z) can be classified as a pure TE .. ..
or pure TM mode, depending on thieg(z) parity with re- D(r)=e(r)E(r), B(r)=pu(r)H(r). (39
spect to the mirror reflectiom, : .
In a lossless dielectric medium, the material tensgrg and

for TE mode myW(z) = —Vi(2); w(r) are Hermitian. In a stratified medium, the tense¢s)
i i and,[L(F) depend on a single Cartesian coordingtand the
for TM mode m,Wy(z)="Y¥(z). @D Maxwell equationg34) can be recast as

The TE modes have axially symmetric dispersion relation . w. . N ®. .
VXE(r)=i E,u(z)H(r), VXH(r)=—i Es(z)E(r).

o(Ky,0K) = w(K,,0,—K). (32 (36)

Indeed, the component,, of the dielectric tensoe, does  Solutions for Eq.(36) are sought in the following form:

not affect the TE modes, because in this case the electric

componentE(r,t) of the electromagnetic field is parallel to E(r)=e & kNE(z), H(r)=e ke kMH(z). (37)
they axis. As a consequence, the axial dispersion relation of

the TE spectral branches is similar to that of the isotropicSubstitution(37) transforms the system of six linear equation
case withs,,=0, where it is always symmetric. By contrast, (36) into a system of four linear differential equations

for the TM modes we havé&(r,t)Ly. Therefore, the TM

modes are affected by,, and display axially asymmetric Ex(2)

dispersion relation ) Ey(2)
aZ\If(z)=iEM(z)‘P(z), V(z)= H.(2) (38
w(ky,0K)# w(ky,0,—k), (33 X
Hy(z)

as seen in Fig. @). We wish to remark, though, that equality o _ .
(32) cannot be derived from symmetry arguments only. Thelhe explicit expression for the Maxwell operatd(z) is
axial spectral symmetry of the TE modes is not exact and

relies on approximatiori27) for the magnetic permeability M(2)= M1 Mlz} (39
of the A layers. On the other hand, the fact that the spectral My My,
branches have different parif@1) with respect to the sym-
metry operationm, implies that none of the branches can where
develop a stationary inflection poifgee Eq(83) and expla- . .
nations thereaftér Thus, in the case,=0, in spite of the &z Myz (_ Eyz | HMyz
. : : n n +
axial spectral asymmetry, the AFM regime cannot occur ei- €5 % Mgy ) €, Mgy
ther. My = % % )
Finally, in the general cas@), whenn,#0 andn,#0, _(S_XZ_ Bxz) o _Eyz, M
all the spectral branches display propefty’) of the axial €77 Mzz 822 0 Moz
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_Eyz M:Zn (Syz My B. The transfer matrix
W [ L

n
" €, 7 Mgy €57 fhyg) X The Cauchy problem
22— )
e, i D= @), V)=V, (@4
S — Ny —— 2)=i—M(2)¥(2), Z0) =
€7z Mzz Y €77 X Mzz y z c 0 0
5 . . .
e M;#yz+ Ny o Myz:u“;z_ g for the reduced Maxwell equatidi38) has a unique solution
xy yy
Moo Mzz €7z Mzz €2z V(2)=T(2,29) ¥ (2o), (45)
12— * 2 * '
Mxzbhyz; N Mxzlbyz NN . . .
— Myxt e, Y — Myyt L where the 4«4 matrix T(z,zp) is so-calledtransfer matrix
Mzz %2z Mzz 82z From definition(45) of the transfer matrix it follows that
L L Eafyz Ny eyfys M T(220)=T(22)T(Z\20). T(2.20)=T X2.2),
—&5y ——— —eyt +—
M €2z Mzz €2z Mzz T(z.2)=1 (46)
21— . z,z)=1.
B 8X28:Z_ n_)zl 8x28§z+ nyny
Exx £, Mgz Exy £, My The matrix T(z,zo) is uniquely defined by the following

Cauchy problem:

The Cartesian components of the material tensoed u
are functions o and(in dispersive medjaw. The reduced 0,T(z,29) =i EM(Z)T(Z ), T(z,2)=I. (47)
Maxwell equation(38) should be complemented with the S c e ’

following expressions for the components of the fields: ) ) o
Equation(47), together withJ-Hermitivity (42) of the Max-

E,=(—nHy+nH,—efE—e3E e, well operatorM(z), implies that the matrixT(z,zo) is J
unitarity, 1.e.,
Hz:(any_nyEx_MISHX_IU“%Hy)IU“;zl’ (40) TT(Z,ZO)ZJTil(Z,ZO)J (48
where (,n,) are defined in Eq(12). (see the proof in Appendix )A The J-unitarity (48) of the
Notice that in the case of normal incidence, the Maxwellransfer matrix imposes strong constraints on its eigenvalues
operator is drastically simplified [see Eq(61)]. It also implies that
M{;=My,=0 for n,=n,=0. (41 |detT(z,zq)|=1. (49
This is the case we dealt with in R¢1.6] when considering The transfer matrix 5 of a stack of layers is a sequential

the phenomenon of electromagnetic unidirectionality in nonproduct of the transfer matricds, of the constitutive layers
reciprocal magnetic photonic crystals. By contrast, the objec-
tive of this section is to show how the terrivs;; andM,,,

occurring only in the case of oblique incideri@], can lead Ts= lr_n[ T (50)
to the phenomenon of AFM, regardless of whether or not the
nonreciprocal effects are present. If the individual layers are homogeneous, the corresponding
Importantly, the 44 matrix M(z) in Eq. (39) has the single-layer transfer matriceg,, are explicitly expressed in
property ofJ Hermitivity defined as terms of the respective Maxwell operatdv,, :
(IM)T=JM, (42) To=explizyM ), (51)
where wherez,, is the thickness of thenth layer. The explicit ex-
pression forM, is given by Eq.(39). Thus, formula(50),
0 O 0 1 together with Eqs(51) and(39), gives us an explicit expres-
0 0 -1 0 sion for the transfer matriX s of an arbitrary stack of aniso-
J=J"1= (43)  tropic dielectric layersTg is a function of(i) the material
0 -1 0 O ~ - N
- 0 tensorse and u in each layer of the stackji) the layer

thicknesses(iii) the frequencyw, and (iv) the tangential

componentsK, ,k,) = (nw/c,nyw/c) of the wave vector.
Different versions of the reduced Maxwell equati#8) Consider the important particular case of normal wave

can be found in the extensive literature on electrodynamicpropagation. Using Eq51) and the explicit expressiof39)

of stratified medidsee, for example, Refgl7-19, and ref-  for the Maxwell operator, one can prove that
erences therejn For more detailed studies dfHermitian

and J-unitary operators see RgR0]. def(Tg)=1 for n,=n,=0. (52
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Additional information related to the transfer matrix for- relates to the case of all four Bloch eigenmodes being ex-
malism can be found in Refgl7—-19 and references therein. tended. The second possibility

C. Periodic arrays: Bloch eigenmodes

Ki= I K= 3 Kg= Zv (63

In a periodic layered structure, all material tensors, alongvherek;#Kkj , k,#Kj , relates to the case of two extended

with the J-Hermitian matrixM(z) in Eq. (38), are periodic
functions ofz

M(z+L)=M(z), (53

whereL is the length of a primitive cell of the periodic stack.

By definition, Bloch solutionaV’(z) of the reduced Maxwell
equation(38) with the periodic operatoM (z) satisfy
Vi (z+L)=€e*V (2). (54)

Definition (45) of the T matrix together with Eq(54) give

Y (z+L)=T(z+L,2)¥(2)=€*"¥(2). (55
Introducing the transfer matrix of a primitive cell
T, =T(L,0), (56)
we have from Eq(55)
T & =€, (57)

where &, =¥ ,(0). Thus, the eigenvectors of the transfer
matrix T, of the unit cell are uniquely related to the eigen-

modes of the reduced Maxwell equati¢®8) through the
relations

Oy, =V (0), Py,=¥,(0),
D =W, (0), By,=W,(0). (58)
The respective four eigenvalues
X, =ekit  i=1234 (59
of T, are the roots of the characteristic equation
F(X)=0, (60)

where F(X)=det(T, —X1)=X*+P3X3+P,X?+P;X+1.

and two evanescent modes. The last possibility

ki=k3, ks3=kj, (64)
where ki #K5 , ko#k5 , ks#k} , ky#Kj , relates the case
of a frequency gap, when all four Bloch eigenmodes are
evanescent.

Observe that the relation
ki +k,+ks+k,=0,

valid in the case of normal incidendsee Refs[15,16),
may not apply now.

Axial spectral symmetry

Assume that the transfer matfTx is similar to its inverse

T =U"T U, (65)
whereU is an invertible 4<4 matrix. This assumption to-
gether with property48) of J unitarity imply the similarity
of T_ and T/

T =V Ty, (66)
whereV=JU. This relation imposes additional restrictions
on eigenvalueg59) for a given frequencyw and given

(Ky s ky)
{ki}={—ki}, (67)

Relation (67) is referred to as the axial spectral symmetry,
because in terms of the corresponding axial dispersion rela-
tion, it implies equality(18) for every spectral branch.

If the sufficient condition65) for the axial spectral sym-
metry is not in place, then we can have for a giwerand

(K .ky)

i=1,2,3,4.

{k|}7&{_k|}, |:1,2,3,4 (68)

For any givenw and (,.k,), the characteristic equation Which implies the axial spectral asymmetd?).

defines a set of four valudX,X5,X3,X,4}, or equivalently,

{k1,k5,k3,ks}. Real k correspond to propagating Bloch

waves (extended modes while complexk correspond to

evanescent modes. Evanescent modes are relevant near p

D. Stationary inflection point

The coefficients of the characteristic polynomiglX) in
E‘?.f. (60) are functions ofw and (y,k,). Let Fo(X) be the

tonic crystal boundaries and other structural irregularities. paracteristic polynomial at the stationary inflection point

The J-unitarity (48) of T, imposes the following restric-

tion on eigenvalueg9) for any givenew and (k,ky):

{k}={Kk*}, i=1,234. (61)

In view of relation(61), one has to consider three different

situations. The first possibility

ki=kf, ky=k}, ks=k%, Kk,=k} (62)

(16), wherew=wy and Ky ,k,) = (kox,Koy). The stationary
inflection point(16) can also be defined as follows

Fo(X)=0, F§(X)=0, F§(X)=0, Fg(X)#0.
(69)

This relation requires the respective valueXgf=exp(kqL)
to be a triple root of the characteristic polynomkag(X)

implying
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Fo(X)=(X—X1)(X—Xq)3=0. (70 become degenerate, while the respective three eigenvectors
Dy, ch3, andCIbk4 become collinear,
A small deviation of the frequencw from its critical
value wy changes the coefficients of the characteristic poly- O —a1 Py, O —ardy, D —azdy,
. . 2 0 3 0 4 0
nomial and removes the triple degeneracy of the solutign

1/3 as w—wgp. (75)
X—X %_61/3 &F()/O"Lt) O— )l/3§
° PFolaX3 o The latter important feature relates to the fact thatwat
= wp the matrixT_ has a nontrivial Jordan canonical form
gz 1,6277”3,8_277”3 (71)
X, 0 0 O
or, in terms of the axial quasimomentuin ) 0 X, 1 0
13 Uu-T.u= 0 0 X 1l (76)
k—k ~61/3 @~ %o g éz 1 eZﬂ'i/3 e—277'i/3 (72) 0
0 6’ ’ ’ ’ ’ 0 0 0 XO
where and, therefore, cannot be diagonalized. It is shown rigorously

in Ref.[16] that the very fact that th&, eigenvalues display

singularity (71) implies that atw = w, the matrixT, has the
>0. (73 canonical form(76). In line with Eq. (75), the matrix T

from Eq. (76) has only two(not foun eigenvectors(1) (Dkl

=K
° =Wy, (0), corresponding to the nondegenerate régtand
The three solution$72) can also be rearranged as relating to the extended mode withi,<0; (2) q;ko
Koy~ k0+61’3(wg’)*1’3(w—w0)1’3, =\Ifk0(0), corresponding to the triple roat, and related to
the AFM.
1 The other two solutions of the Maxwell equati¢®8) at
Kep~Ko+ 5(6)1/3(%')_1/3(&)— wg) 3 o= w are general Floquet eigenmodes, which do not reduce

to the canonical Bloch forntb4). Yet, they can be related to
\Ifko(z). Indeed, following the standard procedusee, for
example, Refd.21,22), consider an extended Bloch solution
W\ (z) of the reduced Maxwell equatiof38)

V3
+i 761/3( wlé/)—l/3| w— w0|l/3,

1
kev=kot 5(6)"X(wg) "= wp) " LW(2)=0, 77
3 whereL =d,—i(w/c)M(z), where both operatongl (z) and
—i 761/3(w6')_1/3|w_ w0|1/3_ (74) L(z) are functions ofw and (,,k,). Assume now that the

axial dispersion relationw(k) has a stationary inflection
point (13) atk=kg. Differentiating Eq.(77) with respect tk

The realke, in Eq. (74) relates to the extended molie.(z), at constantK, ,k,) gives, with consideration for Eq13)

with u,=0 at w=w,. The other two solutiong,, andkgy
=kg, . corr_espond_ '_[0 a pair of evanesc_en_t r_notlfgg(z) and Lo W (2)=0, Lﬁﬁkllfk(Z)=O, at k=Kko.
Yey(z) with positive and negative infinitesimally small
imaginary parts, respectively. Those modes are truly evanestis implies that ak=k,, both functions
cent (i.e., have Imk#0) only if w# wg, but it does not
mean that atw=w, the eigenmodes¥V,(z) and ¥ \(z) V01(2) = W i(2)|k=k, and \Ifoz(z)=¢9§k\lfk(z)|k:k0
become extended. In what follows we will take a closer look (78)
at this problem.
are also eigenmodes of the reduced Maxwell equatiom at
Eigenmodes at the frequency of AFM = w,. RepresentingV',(z) in the form

Consider the vicinity of stationary inflection poit3).
As long asw # wg, the four eigenvector&8) of the transfer
matrix T, comprise two extended and two evanescent Bloch _ _ —
solutions. One of the extended modeay,d)kl) corresponds where ii(z+L)=y(L), Imk=0, and substituting Eq.

! (79) into Eq.(78) we get
to the nondegenerate real ro6f=e'1- of the characteristic
equation(60). This mode has negative axial group velocity Vo(2) =T, (2)+izV (2), (80)
u,(k,)<0 and, therefore, is of no interest for us. The other 0 0
three eigenvectors of, correspond to three nearly degener-
ate roots(71). As w approaches, these three eigenvalues

V\(2)= ¢ (2) €™, (79

Vol 2)=W| () +izW(2)-2W (2), (8D
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where place. Consider situatiof81), when at any given frequency
— . o and fixed @, ,ny)=(n,,0), two of the Bloch eigenmodes
Wi (2) = [ dthi(2) k- k& are TE modes and the other two are TM modes. Note, that
TE and TM modes belong tdifferentone-dimensional rep-
and resentations of the Bloch wave vector group. In such a case,
Ef<0(2):[fﬁkl/fk(z)]k:koe”‘oz ';2? rntransfer matrixT, can be reduced to the block-diagonal
are auxiliary Bloch functiongnot eigenmodes T T 0 0
To summarize, at the frequenay, of AFM, there are four 1o
solutions for the reduced Maxwell equati¢ds), T Toy T 0 0
L=
0 0 Ta T
Vi (2), Vi (2), You2), Voil2). (82 B

0 0 T43 T44
The first two solutions from Eq(82) are extended Bloch
eigenmodes withu,<0 andu,=0, respectively. The other The respective characteristic polynomfa(X) degenerates
two solutions diverge as the first and the second power of INto
respectively, they are referred to as genénain-Bloch Flo-
guet modes.

Deviation of the frequencw from w,y removes the triple
degeneracy76) of the matrixT, , as seen from Eq71). The
modified matrixT, can now be reduced to a diagonal form
with the set(58) of four eigenvectors comprising two ex-
tended and two evanescent Bloch solutions.

F(X)=F1e(X)Frm(X), (83

whereF1g(X) and F1y(X) are independent second degree
polynomials describing the TE and TM spectral branches,
respectively. Obviously, in such a situation, the transfer ma-
trix cannot have the nontrivial canonical forvi6), and the
respective axial dispersion relation cannot develop a station-
ary inflection point(69), regardless of whether or not the
axial spectral asymmetry is in place.

In Sec. II, we discussed the relation between the symme-
try of the axial diSpel’Sion relation of a periOdiC StaCk, and the IV. THE AFM REGIME IN A SEMI-INFINITE STACK
phenomenon of AFM. At this point we can prove that indeed
the axial spectral asymmet(¢7) is a necessary condition for A. Boundary conditions
the occurrence of the stationary inflection point and for the | vacuum(to the left of semi-infinite slab in Fig.)lthe
AFM associated with such a point. As we have seen earlier igjectromagnetic field?,(z) is a superposition of the inci-
this section, the stationary inflection point relates to a triplegent and reflected waves
root of the characteristic polynomid (X) from Eq. (60).
SinceF(X) is a polynomial of the fourth degree, it cannot v (2)=V¥,(2)+W¥g(z), atz<O. (84
have a symmetric pair of triple roots, that would have been
the case for axially symmetric dispersion relation. HenceAt the slab boundary we have
only asymmetric axial dispersion relatier{k) can display a

E. Symmetry considerations

stationary inflection point13) or, equivalently, Eq(16), as Wv(0)=¥,(0)+Wg(0) =P+ Pg, (85

shown in Fig. 4b). In this respect, the situation with the where

AFM is somewhat similar to that of the frozen mode in uni-

directional magnetic photonic crystdl&6]. The difference E.1 T E,

lies in the physical nature of the phenomenon. The bulk hx )

spectral asymmetr{24) leading to the effect of electromag- = Eiy _ Eiy

netic unidirectionality, essentially requires the presence of '~ Hi - —E.,xnxnynz_l—E|,y(1—n§)n{1 '

nonreciprocal magnetic materials. By contrast, the axial o 1 1

spectral asymmetr{17) along with the AFM regime can be Hiyl [ Ex(1=nj)n,"+E; ynynyn,

realized in perfectly reciprocal periodic dielectric stacks with o

symmetric bulk dispersion relatiof22). On the other hand, Erx Erx

the axial spectral asymmetry essentially requires an oblique o Ery Ery

ggr;:nlgﬁg:jr;nce, which is not needed for the bulk spectral ®g Hex ER,annynz_leER,y(l—n)z()nz_l
Another important symmetry consideration is that in the Hryl | —Erx(1—nin;'—Eg,nnyn;*

vicinity of the stationary inflection pointl3), all four Bloch (86)

eigenmodes(58) must have the same symmetry, which o .

means that all of them must belong to the same oneThe complex vectorE&, ,H, and Eg,Hy are related to the
dimensional irreducible representation of the Bloch waveactual electromagnetic field componeigs H, and Eg,Hg
vector group. This condition is certainly met when the direc-as

tion defined by 6, ,ny) is not special in terms of symmetry. _ R _ R

Let us see what happens if the above condition is not in E = @/CxtnWE (7) H =e'@/cxtnyy
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Eg=el@/ctME (7)) Hp=el@/c mode. Since evanescent modes do not transfer energy in the
z direction, the extended mode is solely responsible for the

The transmitted wav 1(z) inside the semi-infinite slab axial energy fluxs,

is a superposition of two Bloch eigenmod&$],
perp genmods] SV =S,(Vey. (01)
According to Eq.(B3), S, does not depend onand can be

expressed in terms of the semi-infinite slab transmittance
from Eq. (2)

V(2)=V,(2)+V,(2), atz>0. (87)

The eigenmodedl (z) and ¥,(z) can be both extended
(with u,>0), one extended and one evanesc@mth u,
>0 and Imk>0, respectively, or both evanesceniwith
Im k>0), depending on which of the three ca$68), (63),
or (64) we are dealing with. In particular, in the vicinity of
the AFM [e.g., the vicinity ofwg in Fig. 4(b)], we always
have situationi63). Therefore, in the vicinity of AFMW +(2)

is a superposition of the extended eigenmddg(z) with
the group velocityu,>0, and the evanescent mode,,(z)

S,=7(S),=7S, (92)

whereS, = (S)), is the axial energy flux of the incident wave,
which is set to be unity.

The energy densityV,, associated with the extended
modeW¥.,(z) can be expressed in terms of the axial compo-
nent u, of its group velocity and the axial component

with Im k=0 S,(V¥,,) of the respective energy density flux
Vi(2)=Ve(2)+ W, (z), at z>0. (88 de| L
. . . Wey= Uz_lSz(‘I’ex)=(—) TS . (93
The asymptotic expressions for the respective wave vectors K Ky Ky

kex @andkg, in the vicinity of AFM are given in Eq(74).

When the frequencyw exactly coincides with the fre- In close proximity of the AFM frequencw,, we have, ac-
guencyw, of the AFM, representatio(88) for ¥1(z) is not  cording to Eq.(13),
valid. In such a case, according to E@4), there are no
evanescent modes at all. It turns out thabat wg, the elec- 1, K— k)3 94
tromagnetic field inside the slab is a superposition of the @ w°~6w°( 0% (94)
extended mode¥', () and the(non-Bloch Floquet eigen-
modeW ,(2) from Eq. (80) where wg is defined in Eq.(73). Differentiating Eq.(94)

with respect tok
Vi(2)=Vy (2)+¥p(2), at w=wo and z>0. 213

dw 1 6
8 (%]~ eptkk= S wh) e w0 ™
Ky Ky

Since the extended eigenmoﬂfe(o(z) has zero axial group (95)

velocity u,, it does not contribute to the axial energy flux ) ) )

S,. By contrast, the divergent non-Bloch contribution @"d Plugging Eq(95) into Eq.(93) yields

V,.(2) is associated with the finite axial energy flis 5

>0, although the notion of group velocity does not apply . =13 \-2/3

here. A detailed analysis is carried out below. Wex 623 Si(wg) @ wo) T (%6)
Knowing the eigenmodes inside the slab and using the

standard electromagnetic boundary conditions where the transmittance depends on the incident wave po-
larization, the frequencw, and the direction of incidence
Or=P+Pp, 90 (ny,ny)=(ck/w,ck,/w). Formula(96) implies that the en-

_ ergy densityW,, and, therefore, the amplitudgl .,(2)|
whered =¥ (0), one carexpress the amplitude and compo- =| | of the extended mode inside the stack diverge in the
sition of the transmitted wavé# and reflected wav®'r, in yjicinity of the AFM regime

terms of the amplitude and polarization of the incident wave

W, . This gives us the transmittance and reflectance coeffi-|d |~ Wey~ V7S (0l) Yo —wo| Y3 as w— w,.
cients(2) of the semi-infinite slab, as well as the electromag- 97)
netic field distribution¥ (z) inside the slab, as functions of

the incident wave polarization, the directianof incidence,
and the frequencw.

The divergence of the extended mode amplityide,
imposes the similar behavior on the amplitug&.,,(0)|
=|®,,| of the evanescent mode at the slab boundary. Indeed,
the boundary conditioiQ0) requires that the resulting field
O1=D,,+D,, remains limited to match the sud,+ Py

In what follows we assume that can be arbitrarily close of the incident and reflected waves. Relati@®) together
but not equal tow,, unless otherwise is explicitly stated. with Eq.(97) imply that there is a destructive interference of
This will allow us to treat the transmitted wa¥;(z) as a the extendedb., and evanescer®,, modes at the stack
superposition(88) of one extended and one evanescentoundary,

B. Field amplitude inside the semi-infinite slab
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Doy~ — P, ~K\TS (0g) VY 0= wg) 3D

(98)

as w—wo,

Here®, is the normalized eigenvector &f in Eq. (76); K

is a dimensionless parameter. Expresgi@d) is in compli-

ance with the earlier made statemén®) that the column
vectors®., and®,, become collinear a®— w,.

1. Space distribution of electromagnetic field in the AFM regime

The amplitudd W (z)| of the extended Bloch eigenmode

remains constant and equal|tb.,| from Eq.(97), while the

PHYSICAL REVIEW E 68, 036609 (2003

As w approaches, the respective transmittaneezanishes

in this case, and there is no AFM regime. The second special
case is when the elliptic polarization of the incident wave is
chosen so that it produces a single evanescent eigenmode
V,(2) inside the slalhno extended contribution td(z)].

In such a casey'(z) reduces toV,(z), and the amplitude
|1(z)| decays exponentially witk in accordance with Eq.
(99). The respective transmittanean this latter case is zero
regardless of the frequenay, because evanescent modes do
not transfer energy. Importantly, as approachesy,, the
polarizations of the incident wave that produce either a sole
extended or a sole evanescent mode become indistinguish-

amplitude of the evanescent contribution to the resulting?P!€; in accordance with E75). In the vicinity of the AFM

field decays as
|V ey (2)| =[P €77 M K, (99

where  Imkg,~ \3/26Y%(w]) Yo—wlY®. Atz
>(Im kg,) "1, the destructive interferenc®8) of the ex-

tended and evanescent modes becomes ineffective, and the
only remaining contribution toV1(z) is the extended mode

V.,(2) with huge and independent afamplitude(97). This
situation is graphically demonstrated in Fig. 5.

Let us see what happens when the frequesaciends to
its critical valuewy. According to Eqs(57) and (88), at z
=NL, N=0,1,2 ..., theresulting field ¥;(z) inside the
slab can be represented as

P(2) =P ?lext O /7o, (100

Substitutingke, and ke, from Eq. (74) in Eg. (100, and
taking into account the asymptotic relati®8), we have

7S
Ort+zKy/— 61
w

0

i \/§ w—w
0)‘%

272 To—ay

Yi(z)~

X €70 as w— wp.

(107

Although this asymptotic formula is valid only fa=NL,
N=0,1,2...
(80) for the non-Bloch solutionV 1((z) of the Maxwell equa-
tion (38) at w= w,.

2. The role of the incident wave polarization

, it is obviously consistent with expression

regime, the maximal transmittaneeis achieved for the in-
cident wave polarization orthogonal to that exciting a single
extended or evanescent eigenmode inside the semi-infinite
stack.

C. Tangential energy flux

So far we have been focusing on the axial electromagnetic
field distribution, as well as the axial energy fl& inside
the semi-infinite slab. At the same time, in and near the AFM
regime, the overwhelmingly stronger energy flux occurs in
the tangential direction. Let us take a closer look at this
problem.

The axial energy fluxs, is exclusively provided by the
extended contributionV ,,(z) to the resulting field¥+(2),
because the evanescent mokblg,(z) does not contribute to
S,. Neither| ¥, nor S, depends orz [see Eq.(B3)]. By
contrast, both the extended and the evanescent modes deter-

mine the tangential energy fILé(,(z). Besides, according to
Eq. (B3), the tangential energy flux depends orFar from

the AFM regime, the role of the evanescent mode is insig-
nificant, becaus& ., (z) is appreciable only in a narrow re-
gion close to the slab boundary. But the situation appears
quite different near the AFM frequency. Indeed, according to
Eqg. (99), the imaginary part of the respective Bloch wave
vector k, becomes infinitesimally small near the critical
point. As a consequence, the evanescent mode extends deep
inside the slab, so does its role in formationé;(z). The
tangential energy qu>"5‘T(z) as function ofz can be directly
obtained using formuléB5) and the explicit expression for
Vi(2) =V (2) + Ve, (2). Although the explicit expression
for S,(2) is rather complicated and cumbersome, it has very
simple and transparent structure. Indeed, the tangential en-
ergy flux can be represented in the following form:

The incident wave polarization affects the relative contri-
butions of the extended and evanescent components to the
resulting field¥(z) in Eqg. (88). In addition, it also affects
the overall transmittanc€). The situation here is similar to
that of the normal incidence considered in Rdf6]. There .
are two special cases, merging into a single oneasw,.  Where the tangential group velocity, behaves regularly at
The first one occurs when the elliptic polarization of the @ = wg. Therefore, the magnitude and the space distribution
incident wave is chosen so that it produces a single extendesf the tangential energy flué,(z) in and near the AFM
eigenmodeV .,(z) inside the slafno evanescent contribu- regime literally coincide with that of the electromagnetic en-

S.(2)=u,W(z),

tion to W1(2)]. In this caseW+(z) reduces to¥.,(z), and
its amplitude| ¥ (z)| remains limited and independent of

ergy densityW(z), which is proportional to|¥1(z)|%. A
typical picture of that is shown in Fig.(&.

036609-14



OBLIQUE FROZEN MODES IN PERIODIC LAYERED MEDIA PHYSICAL REVIEW B8, 036609 (2003

V. SUMMARY 3,T(2)=iM(2)T(z), T(0)=I (A1)

As we have seen in the preceding section, a distinctive
characteristic of the AFM regime is that the incident mono-whereM(z) is a J-Hermitian matrix. Let us prove that the
chromatic radiation turns into a very unusual grazing wavelnique solutioniT(z) for Eq. (A1) is a J-unitary operator,
inside the slab, as shown schematically in Figs. 3 and 6.
Such a grazing wave is significantly different from that oc- TH2)=3T X237 L. (A2)
curring in the vicinity of the total internal reflection regime,
where the transmittfed wave also propagates along th_e intety prove it, notice that EqA1L) implies
face. The most obvious difference is that near the regime of
total internal reflection, the reflectivity approaches unity, troy— _ Ttwn: tAy —
which implies that the intensity of the transmitteefracted KTH2)==T()IA@DI, THO=I, (A3)
wave vanishes. By contrast, in the case of AFM the light
reflection from the interface can be small, as shown in a
example in Fig. 48). Thus, in the AFM case, a significant
portion of the incident light gets converted into the grazing
wave (the AFM) with huge amplitude, compared to that of J
the incident wave. For this reason, the AFM regime can be of
great utility in many applications. we have

Another distinctive feature of the AFM regime relates to
the field distribution inside the periodic medium. The elec- 3, T H2)=-T 2[4, T(DIT X2),
tromagnetic field of the AFM can be approximated by a di-
vergent Floguet eigenmod®,4(z) from Eg. (80), whose  which in a combination with Eq(A1) yields
magnitude| ¥ ,(z)|? increases ag?, until nonlinear effects
or other limiting factors come into play. In fact, the field ,T X 2)=-T Y2)iJA(z), T Y0)=I. (A4)
amplitude inside the slab can exceed the amplitude of the

@ncident plane wave by several_ orders of magnitude, depen?:ina”y, multiplying both sides of equalityA4) by J and
ing on the quality of the periodic array, the actual number o using the fact thad?=1, we get the following Cauchy prob-
the layers, and the width of the incident light beam. lem for JT~1(2)J:

Looking at thez component of light group velocity and
energy flux, we see a dramatic slowdown of light in the - _ - . _ _
vicinity of the AFM regime, with all possible practical appli- 3LIT 1 2)I3]=~[IT H(2)JNiAZ)3, ITH0)I=I
cations extensively discussed in the literat(see, for ex- (A5)
ample, Refs[9-12], and references therginin principle,
there can be a situation when the tangential componen
(uy,uy) of the group velocity also vanish in the AFM re-
gime, along with the axial componenj. Although we did
not try to achieve such a situation in our numerical experi-
ments, it is not prohibited and might occur if the physical APPENDIX B: ENERGY DENSITY FLUX
parameters of the periodic array are chosen properly. In such
a case, the AFM regime reduces to its particular case—the

frozen mode regime withi=0 inside the periodic medium.

This regime would be similar to that considered in R&6], S(r)= iRe{ E* ()X H(r)]. (B1)
with one important difference: it is not related to the mag- 87

netic unidirectionality and, hence, there is no need to incor-

porate nonreciprocal magnetic layers in the periodic arraysubstituting representatiof87) for E(F) and H(F) in Eq.
The latter circumstances allow to realize the frozen modgB1) yields

regime at the infrared, optical, and even UV frequency range.

hereA(z) =JM(z) is a Hermitian matrix. Now, let us find
he respective Cauchy problem for 1(z). Since

AT@T H2)]=0=T(2)[3,T (2)]+[d,T(2]T (),

hich is identical to that fol (z) from Eq.(A3). Since both
auchy problem$A3) and(A5) have unique solutions, their
similarity implies relation(A2) of J unitarity.

The real-valued Poynting vector is defined by

- c - -
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APPENDIX A: J UNITARITY
OF THE TRANSFER MATRIX
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V-S=4,S,(z)=0, i 0 _ny 0 813 i
M33 €33
hich together with Eq(B2) gives
vinieh together with Eq(B2) v Sy oM™ M oem M
- - - M33 M33 M33 €33 M33
S(r)=§,=const, 5(r)=S8(z), Sy(r)=S,(2). Gy= ,
(B3) 0 M13 0 _ny
M33 €33
The explicit expression for the component of the energy £Ts &3 Mg ny Ny
flux (B2) is _— ——— - 2—
L €33 €33 M3z3 €33 €33
1 1 ~ n n * * =
S,=5[EfHy—EXHy+ E,HE —E H} 1=5(F,JV). My Bas M Has
2 2 M33 M33 €33 M33 M33
(B4) )
__x 0 _ P23 0
The tangential components of the energy flux can also be Gy= 33 £33
expressed in terms of the column vec®(z) from Eq.(38). €l3 M3 €53 ny Ny
Using expression$40) for E, andH, and eliminating these - 8_33 liaa - 8_33 28_33 - 8_33
field components fron$(z) in Eq. (BZ) yields
M3 0 M 0
L M33 €33 J

1 A
S=5(V.6,0),

1.
=5(1,6,0), (B5)

whereG, and G, are Hermitian matrices,

Both G, andG, are functions of the Cartesian coordinate
frequencyw, and the directiom of incident wave propaga-

tion.
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