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Oblique frozen modes in periodic layered media

A. Figotin and I. Vitebskiy
Department of Mathematics, University of California, Irvine, Irvine, California 92697, USA

~Received 9 April 2003; revised manuscript received 27 May 2003; published 17 September 2003!

We study the classical scattering problem of a plane electromagnetic wave incident on the surface of
semi-infinite periodic stratified media incorporating anisotropic dielectric layers with special oblique orienta-
tion of the anisotropy axes. We demonstrate that an obliquely incident light, upon entering the periodic slab,
gets converted into an abnormal grazing mode with huge amplitude and zero normal component of the group
velocity. This mode cannot be represented as a superposition of extended and evanescent contributions. In-
stead, it is related to a general~non-Bloch! Floquet eigenmode with the amplitude diverging linearly with the
distance from the slab boundary. Remarkably, the slab reflectivity in such a situation can be very low, which
means an almost 100% conversion of the incident light into theaxially frozen modewith the electromagnetic
energy density exceeding that of the incident wave by several orders of magnitude. The effect can be realized
at any desirable frequency, including optical and UV frequency range. The only essential physical requirement
is the presence of dielectric layers with proper oblique orientation of the anisotropy axes. Some practical
aspects of this phenomenon are considered.

DOI: 10.1103/PhysRevE.68.036609 PACS number~s!: 42.70.Qs, 41.20.2q, 84.40.2x
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I. INTRODUCTION

Electromagnetic properties of periodic stratified me
have been a subject of extensive research for decades~see,
for example, Refs.@1–3#, and references therein!. Of particu-
lar interest has been the case of periodic stacks~one-
dimensional photonic crystals! made up of lossless dielectri
components with different refractive indices. Photonic cr
tals with one-dimensional periodicity had been widely us
in optics long before the term ‘‘photonic crystals’’ was in
vented.

Let us look at the classical problem of a plane electrom
netic wave incident on the surface of semi-infinite plan
parallel periodic array, as shown in Fig. 1. The well-know
effects of the slab periodicity are the following.~i! The pos-
sibility of omnidirectional reflectance when the incident r
diation is reflected by the slab, regardless of the angle
incidence;~ii ! the possibility of negative refraction, when th
tangential component of the energy fluxSW T of the transmitted
wave is antiparallel to that of the incident wave;~iii ! dra-
matic slowdown of the transmitted wave near photonic ba
edge frequency, where the normal component of the tra
mitted wave group velocityuW vanishes along with the respe
tive energy fluxSW T . An extensive discussion on the subje
and numerous references can be found in Refs.@4–13#. All
the above effects can occur even in the simplest case
semi-infinite periodic array of two isotropic dielectric mat
rials with different refractive indices, for example, glass a
air. The majority of known photonic crystals fall into th
category. The introduction ofdielectric anisotropy, however,
can bring qualitatively new features to electromagnetic pr
erties of periodic stratified media and open up new oppo
nities for practical applications~see, for example, a recen
publication@14#!. One of such phenomena is the subject
this work.

A. The axially frozen mode

Consider a semi-infinite periodic stack with at least one
the constituents being an anisotropic dielectric material w
1063-651X/2003/68~3!/036609~16!/$20.00 68 0366
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oblique orientation of the anisotropic axis. A simple examp
of such an array is presented in Fig. 2. We will show th
under certain physical conditions a monochromatic pla
wave incident on the semi-infinite slab is converted into
abnormal electromagnetic mode with huge amplitude a
nearly tangential energy density flux, as illustrated in Fig.
Such a wave will be referred to as theaxially frozen mode
~AFM!. The use of this term is justified because the norm
~axial! componentuz of the respective group velocity be
comes vanishingly small, while the amplitude of the AF
can exceed the amplitude of the incident plane wave by s
eral orders of magnitude.

The group velocityuW of the AFM is parallel to the semi-
infinite slab boundary and, therefore, the magnitude of
tangential component (SW T)' of the respective energy densit
flux SW T is overwhelmingly larger than the magnitude of th
normal component (SW T)z . But, although (SW T)z!(SW T)' , the
normal component (SW T)z of the energy density flux inside th

FIG. 1. The scattering problem for a semi-infinite periodic la

ered medium.SW I , SW R , andSW T are the energy density fluxes of th
incident, reflected, and transmitted waves, respectively. The tr
mitted waveCT is a superposition of two Bloch eigenmodes, ea
of which can be either extended or evanescent. Only exten
modes can transfer the energy in thez direction.
©2003 The American Physical Society09-1
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slab is still comparable with that of the incident plane wa
in vacuum. This property persists even if the normal com
nentuz of the wave group velocity inside the slab vanish
i.e.,

~SW T!z.0 if uz50. ~1!

The qualitative explanation for this is that the infinitesima
small value ofuz is offset by huge magnitude of the energ
densityW in the AFM. As the result, the productuzW, which
determines the normal component (SW T)z of the energy flux,
remains finite. The above behavior is totally different fro
what happens in the vicinity of a photonic band edge, wh
the normal componentuz of the wave group velocity van
ishes too. Indeed, let us introduce the transmittancet and the
reflectancer of a lossless semi-infinite slab

t512r5
~SW T!z

~SW I !z

, r52
~SW R!z

~SW I !z

. ~2!

In line with Eq. ~1!, in the AFM regime the transmittancet
remains significant and can be even close to unity, as sh
in an example in Fig. 4~a!. In other words, the incident plan
wave enters the slab with little reflectance, where it turns i
an abnormal AFM with an infinitesimally small normal com
ponent of the group velocity, huge amplitude, and a hu
tangential component of the energy density flux. By contr

FIG. 2. Periodic layered structure with two layersA andB in a
primitive cell L. TheA layers~hatched! are anisotropic with one o

the principle axes of the dielectric permittivity tensor«̂ making an
oblique angle with the normalz to the layers («xzÞ0). TheB layers
are isotropic. Thex-z plane coincides with the mirror planemy of
the stack.
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in the vicinity of a photonic band edge@at frequencies nea
v5vb in Fig. 4~a!#, the transmittance of the semi-infinit
slab always vanishes, along with the normal componentuz of
the wave group velocity.

It turns out that at a given frequencyv0 the AFM regime
can occur only for a special directionnW 0 of the incident plane
wave propagation

nW 05nW 0~v0!. ~3!

This special direction of incidence always makes an obliq
angle with the normalz to the layers. To findnW 0 for a given
v0 or, conversely, to findv0 for a givennW 0, one has to solve
the Maxwell equations in the periodic stratified mediu
This problem will be addressed in Sec. III. In Sec. II w
consider the relation between the AFM regime and the s
gularity of the electromagnetic dispersion relation resp
sible for such a peculiar behavior. If the frequencyv and the
direction of incidencenW do not match explicitly as prescribe
by Eq. ~3!, the AFM regime will be somewhat smeared.

B. The vicinity of the AFM regime

Let CT(z) be the transmitted electromagnetic field insi
the semi-infinite slab~the explicit definition ofCT(z) is

FIG. 3. An incident plane wave with unity energy density flu
and a certain angle of incidence is converted into the AFM w
huge amplitude, tangential group velocity, and nearly tangential

ergy flux SW T . The normal components (SW I)z and (SW T)z of the inci-
dent and transmitted waves energy flux are comparable in ma
tude.
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n

a

y

FIG. 4. ~a! The transmittancet of periodic
semi-infinite slab vs frequency at fixed directio

nW of the incidence. At the frequencyv0 of the
AFM, t is close to unity, which implies that the
incident wave almost completely gets convert
into the AFM.~b! The respective axial dispersio
relationv(kz) at fixed (nx ,ny) from Eq. ~12!. At
kz5k0 andv5v0 this spectral branch develops
stationary inflection point~16! associated with
the AFM regime.vb is the edge of the frequenc
band for a given (nx ,ny). The values ofv andk
are expressed in units ofc/L and 1/L, respec-
tively.
9-2
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FIG. 5. Destructive interference of the extended and evanescent components of the resulting electromagnetic field~4! inside semi-infinite
slab in close proximity of the AFM regime:~a! the amplitudeuCT(z)u2 of the resulting field,~b! the amplitudeuCex(z)u2 of the extended
contribution,~c! the amplitudeuCev(z)u2 of the evanescent contribution. The amplitudeuC I u2 of the incident wave is unity. The distancez
from the slab boundary is expressed in units ofL.
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given in Eqs.~38! and ~88!#. It turns out that in the vicinity
of the AFM regime,CT(z) is a superposition of the extende
and evanescent Bloch eigenmodes

CT~z!5Cex~z!1Cev~z!, z.0, ~4!

whereCex(z) is an extended mode withuz.0, andCev(z)
is an evanescent mode with Imkz.0. As shown in an ex-
ample in Fig. 5, both the contributions toCT(z) have huge
and nearly equal and opposite values near the slab boun
so that their superposition~4! at z50 is small enough to
satisfy the boundary condition~90!. As the distancez from
the slab boundary increases, the evanescent compo
Cev(z) decays exponentially, while the amplitude of the e
tended componentCex(z) remains constant and huge. As th
result, the field amplitudeuCT(z)u2 reaches its huge satura
tion valueuCexu2 at a certain distance from the slab bounda
@see Eqs.~99!, ~100!, and~101!#.

When the direction of incidencenW tends to its critical
valuenW 0 for a given frequencyv0, the respective saturatio
value uCexu2 of the AFM amplitudeuCT(z)u2 diverges as
unW 2nW 0u22/3. Conversely, when the frequencyv tends to its
critical valuev0 for a given direction of incidencenW 0, the
saturation value of the AFM amplitude diverges
uv2v0u22/3. In the real situation, of course, the AFM am
plitude will be limited by such physical factors as~i! nonlin-
ear effects,~ii ! electromagnetic losses,~iii ! structural imper-
fections of the periodic array,~iv! finiteness of the slab
dimensions,~v! deviation of the incident radiation from
perfect plane monochromatic wave.

Figure 6 gives a good qualitative picture of what rea
happens in the vicinity of the AFM regime. Consider a wi
monochromatic beam of frequencyv incident on the surface
of semiinfinite photonic slab. The direction of inciden
nW 0iSW I is chosen so that condition~3! of the AFM regime is
satisfied atv5v0. As frequencyv tends tov0 from either
direction, the normal componentuz of the transmitted wave
group velocity approaches zero, while the tangential com
nentuW' remains finite

uz;uv2v0u2/3→0, uW'→uW 0 as v→v0 . ~5!
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ry,

ent
-

o-

This relation together with the equality

p

2
2uT5arctan

uz

u'

, ~6!

involving the refraction angleuT , yield

p

2
2uT;uv2v0u2/3→0 as v→v0 . ~7!

Hence, in the vicinity of the AFM regime, the transmitte
~refracted! electromagnetic wave can be viewed as agrazing
mode. The most important and unique feature of this graz
mode directly relates to the fact that the transmittancet of
the semi-infinite slab remains finite even atv5v0 @see, for
example, Fig. 4~a!#. Indeed, letAI and AT be the cross-

FIG. 6. Incident and transmitted~refracted! waves in the vicinity
of the AFM regime. The reflected wave is not shown.u I anduT are
the incidence and refraction angles,SI andST are the energy density
fluxes of the incident and transmitted waves. Both the energy d
sity and the energy density flux in the transmitted wave are m
larger than the respective values in the incident wave. However
total power transmitted by the refracted wave is smaller by factot,
due to much smaller cross-section area of the nearly grazing tr
mitted wave.
9-3
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A. FIGOTIN AND I. VITEBSKIY PHYSICAL REVIEW E 68, 036609 ~2003!
section areas of the incident and transmitted~refracted!
beams, respectively. Obliviously,

AT

AI
5

cosuT

cosu I
. ~8!

Let us also introduce the quantities

UI5AISI , UT5ATST , ~9!

whereSI andST are the energy density fluxes of the incide
and transmitted waves.UI andUT are the total power trans
mitted by the incident and transmitted~refracted! beams, re-
spectively. Expressions~8! and ~9! imply that

UT

UI
5

ST cosuT

SI cosu I
5

~ST!z

~SI !z
5t, ~10!

which is nothing more than a manifestation of the ene
conservation law. Finally, Eq.~10!, together with formula
~7!, yield

ST5tSI

cosu I

cosuT
;uv2v0u22/3→` as v→v0 ,

~11!

where we have taken into account thattSI cosuI is limited
~of the order of magnitude of unity! asv→v0. By contrast,
in the vicinity of the photonic band edge the transmittanct
of the semi-infinite slab vanishes along with the energy d
sity flux ST of the transmitted~refracted! wave.

Expressions~7! and ~11! show that in the vicinity of the
AFM regime the transmitted wave behaves like a graz
mode with huge and nearly tangential energy density fluxST
and very small~compared to that of the incident beam!
cross-section areaAT , so that the total powerUT5ATST
associated with the transmitted wave cannot exceed the
powerUI of the incident wave:UT5tUI<UI .

The above qualitative consideration is only valid on t
scales exceeding the sizeL of the unit cell~which is of the
order of magnitude ofc/v) and more importantly, exceedin
the transitional distance l5(Im kev)21 from the slab bound-
ary where the evanescent mode contribution to the resu
electromagnetic fieldCT(z) is still significant. The latter
means that the width of both the incident and the refrac
beam must be much larger thanl. If the above condition is
not met, we cannot treat the transmitted wave as a beam
expressions~7!–~11! do not apply. Instead, we would have
use the explicit electrodynamic expressions forCT(z), such
as the asymptotic formula~101!. Note that if the directionnW
of the incident wave propagation and the frequencyv ex-
actly matchcondition~3! for the AFM regime, the transmit
ted waveCT(z) does not reduce to superposition~4! of ca-
nonical Bloch eigenmodes. Instead, the AFM is described
a general Floquet eigenmodeC01(z) from Eq. ~80!, which
diverges inside the slab asz, until the nonlinear effects o
other limiting factors come into play. The related mathema
cal analysis is provided in Secs. III and IV.

In some respects, the remarkable behavior of the AFM
similar to that of the frozen mode related to the phenome
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of electromagnetic unidirectionalityin nonreciprocal mag-
netic photonic crystals@15,16#. In a unidirectional photonic
crystal, electromagnetic radiation of a certain frequencyv0

can propagate with finite group velocityuW iz only in one of
the two opposite directions, say, from right to left. The pro
lem with the electromagnetic unidirectionality, though,
that it essentially requires the presence of magnetic mate
with strong circular birefringence~Faraday rotation! and low
losses at the frequency range of interest. Such materials
readily available at the microwave frequencies, but at
infrared and optical frequency ranges, finding appropri
magnetic materials is highly problematic. Thus, at frequ
cies above 1012 Hz, the electromagnetic unidirectionalit
along with the respective nonreciprocal magnetic mechan
of the frozen mode formation may prove to be impractic
By contrast, the occurrence of AFMdoes notrequire the
presence of magnetic or any other essentially disper
components in the periodic stack. Therefore, the AFM
gime can be realizedat any frequencies, including the infra
red, optical, and even ultraviolet frequency ranges. The o
essential physical requirement is the presence of anisotr
dielectric layers with proper orientation of the anisotro
axes. An example of such an array is shown in Fig. 2.

In Sec. II we establish the relation between the pheno
enon of AFM and the electromagnetic dispersion relation
the periodic layered medium. This allows us to formula
strict and simple symmetry conditions for such a pheno
enon to occur, as well as to find out what kind of period
stratified media can exhibit the effect. Relevant theoreti
analysis based on the Maxwell equations in stratified me
is carried out in Secs. III and IV. Finally, in Sec. V we di
cuss some practical aspects of the phenomenon.

II. DISPERSION RELATION WITH THE AFM

Now we establish the connection between the pheno
enon of AFM and the electromagnetic dispersion relat
v(kW ), kW5(kx ,ky ,kz) of the periodic stratified medium. In a
plane-parallel stratified slab, the tangential compone
(kx ,ky) of the Bloch wave vectorkW always coincide with
those of the incident plane wave in Figs. 1, 3, and 6 while
normal componentkz is different from that of the inciden
wave. To avoid confusion, in further consideration thez com-
ponent of the Bloch wave vectorkW inside the periodic slab
will be denoted ask without the subscriptz, namely,

inside periodic stack: kW5~kx ,ky ,k!.

The value ofk is found by solving the Maxwell equations i
the periodic stratified medium for givenv and (kx ,ky); k is
defined up to a multiple of 2p/L, whereL is the period of
the layered structure.

Consider now the frequencyv as function ofk for fixed
(kx ,ky). A typical example of such a dependence is shown
Fig. 7~a!. A large gap at the lowest frequencies is determin
by the value of the fixed tangential components (kx ,ky) of
the quasimomentumkW . This gap vanishes in the case of no
mal incidence, whenkx5ky50. An alternative and more
9-4



-

f

no

OBLIQUE FROZEN MODES IN PERIODIC LAYERED MEDIA PHYSICAL REVIEW E68, 036609 ~2003!
FIG. 7. The axial dispersion relation of aniso
tropic periodic stack in Fig. 2:~a! v(kz) for fixed
values (kx ,ky) of the tangential components o

quasimomentumkW ; ~b! v(kz) for fixed values
(nx ,ny), defining the direction of incidence. In
the case of normal incidence, there would be
difference between~a! and ~b!.
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convenient representation for the dispersion relation is p
sented in Fig. 7~b!, where the plot ofv(k) is obtained for
fixed (nx ,ny) based on

~nx ,ny!5~ckx /v,cky /v!. ~12!

The pair of values (nx ,ny) coincide with the tangential com
ponents of the unit vectornW defining the direction of the
incident plane wave propagation. The dependencev(k) for
fixed (nx ,ny) or for fixed (kx ,ky) will be referred to as the
axial dispersion relation.

Suppose that forkW5kW0 and v5v05v(kW0), one of the
spectral branchesv(k) develops a stationary inflection poin
for given (kx ,ky)5(k0x ,k0y), i.e.,

S ]v

]k D
kx ,ky

U
kW5kW0

50; S ]2v

]k2 D
kx ,ky

U
kW5kW0

50;

S ]3v

]k3 D
kx ,ky

U
kW5kW0

Þ0. ~13!

The value

uz5S ]v

]k D
kx ,ky

~14!

in Eq. ~13! is the axial component of the group velocit
which vanishes atkW5kW0. Observe that

ux5S ]v

]kx
D

k,ky

and uy5S ]v

]ky
D

k,kx

, ~15!
03660
e-representing the tangential components of the group velo
may not be zeros atkW5kW0.

Notice that instead of Eq.~13! one can use another defi
nition of the stationary inflection point

S ]v

]k D
nx ,ny

U
kW5kW0

50, S ]2v

]k2 D
nx ,ny

U
kW5kW0

50,

S]3v

]k3 D
nx ,ny

U
kW5kW0

Þ0. ~16!

The partial derivatives in Eqs.~16! are taken at constan
(nx ,ny), rather than at constant (kx ,ky). Observe that defi-
nitions ~13! and~16! are equivalent, and we will use both o
them.

In Fig. 4~b! we reproduced an enlarged fragment of t
upper spectral branch of the axial dispersion relation in F
7~b!. For the chosen (nx ,ny), this branch develops a station
ary inflection point~16! at v5v0 andk5k0. The extended
Bloch eigenmode withv5v0 and kW5kW0, associated with
the stationary inflection point, turns out to be directly relat
to the AFM.

In Secs. III and IV, based on the Maxwell equations, w
prove that singularity~16! @or, equivalently, Eq.~13!# indeed
leads to the very distinct AFM regime in the semi-infini
periodic stack. We also show that a necessary condition
such a singularity and, therefore, a necessary condition
the AFM existence is the following property of the axi
dispersion relation of the periodic stack:

v~kx ,ky ,k!Þv~kx ,ky ,2k!

or, equivalently,
9-5
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A. FIGOTIN AND I. VITEBSKIY PHYSICAL REVIEW E 68, 036609 ~2003!
v~nx ,ny ,k!Þv~nx ,ny ,2k!. ~17!

This property will be referred to as theaxial spectral asym-
metry. Evidently, the axial dispersion relations presented
Fig. 7 satisfy this criterion. Leaving the proof of the abo
statements to Sec. III, let us look at the constraints impo
by criterion ~17! on the geometry and composition of th
periodic stack.

A. Conditions for the axial spectral asymmetry

First of all notice that a periodic array would definite
have anaxially symmetricdispersion relation

v~kx ,ky ,k!5v~kx ,ky ,2k!

or, equivalently,

v~nx ,ny ,k!5v~nx ,ny ,2k!, ~18!

if the symmetry groupG of the periodic stratified medium
includes any of the following two symmetry operations:

mz ,2z852z3R, ~19!

wheremz is the mirror plane parallel to the layers, 2z is the
twofold rotation about thez axis, andR is the time reversa
operation. Indeed, since 2z(kx ,ky ,k)5(2kx ,2ky ,k) and
R(kx ,ky ,k)5(2kx ,2ky ,2k), we have

2z8~kx ,ky ,k!5~kx ,ky ,2k!,

which implies relation~18! for arbitrary (kx ,ky). The same
is true for the mirror planemz ,

mz~kx ,ky ,k!5~kx ,ky ,2k!.

Consequently, a necessary condition for the axial spec
asymmetry~17! of a periodic stack is the absence of t
symmetry operations~19!, i.e.,

mz¹G and 2z8¹G. ~20!

In reciprocal ~nonmagnetic! media, where by definitionR
PG, instead of Eq.~20!, one can use the following require
ment:

mz¹G and 2z¹G. ~21!

Note, that theaxial spectral symmetry~18! is different
from thebulk spectral symmetry

v~kx ,ky ,k!5v~2kx ,2ky ,2k!. ~22!

For example, the space inversionI and/or the time reversa
R, if present inG, ensure the bulk spectral symmetry~22!,
but neitherI nor R ensures the axial spectral symmetry~18!.
03660
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Application of criterion (21) to different periodic stacks

Condition ~21! for the axial spectral asymmetry impose
certain restrictions on the geometry and composition of
periodic stratified medium, as well as on the direction of t
incident wave propagation.

a. Restrictions on the geometry and composition of
periodic stack.First of all, observe that a common period
stack made up ofisotropicdielectric components with differ-
ent refractive indices always has axially symmetric disp
sion relation~18!, no matter how complicated the period
array is or how many different isotropic materials are
volved. To prove this, it suffices to note that such a sta
always supports the symmetry operation 2z .

In fact, the symmetry operation 2z holds in the more gen-
eral case when all the layers are either isotropic or hav
purely in-planeanisotropy

«̂5F «xx «xy 0

«xy «yy 0

0 0 «zz

G . ~23!

Obviously, the in-plane anisotropy~23! does not remove the
symmetry operation 2z and, therefore, property~18! of the
axial spectral symmetry holds in this case. Thus, we can s
that in order to display the axial spectral asymmetry,
periodic stack must include at least one anisotropic com
nent, either uniaxial or biaxial. In addition, one of the pri
ciple axes of the respective dielectric permittivity tensor«̂
must make an oblique angle with the normal to the laye
which means thatat least one of the two components«xz and
«yz of the respective dielectric tensor must be nonzero.

The above requirement gives us a simple and useful i
on what kind of periodic stratified media can support t
axial spectral asymmetry and the AFM regime. But this
not a substitute for the stronger symmetry criterion~20! or
~21!. For example, although the periodic stack in Fig. 8
cludes theA layers identical to those in Fig. 2, this stack do
not meet criterion~20! for the axial spectral asymmetry. In
deed, the stack in Fig. 8 supports the mirror planemz ,
which, according to expression~19!, ensures the axial spec
tral symmetry.

FIG. 8. Periodic stack composed of anisotropic layersA1 and
A2, which are the mirror images of each other, and isotropic lay
B. This stack has axially symmetric dispersion relation and does
support the AFM regime. This is true even if theB layers are re-
moved.
9-6
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FIG. 9. Axial dispersion relationv(k) for
fixed (nx ,ny) for the periodic array in Fig. 2. The
AFM regime can occur only ifnxÞ0 andnyÞ0
@the case~d!#.
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b. Restriction on the direction of incident wave propag
tion. Consider now an important particular casekx5ky50 of
the normal incidence. Criterion~17! reduces now to the
simple requirement

v~kW !Þv~2kW !, ~24!

@wherekW5(0,0,k)] of the bulk spectral asymmetry, which i
prohibited in nonmagnetic photonic crystals due to the ti
reversal symmetry. Therefore, in the nonmagnetic case,
have the following additional condition for the axial spect
asymmetry:

k'5Akx
21ky

2Þ0, ~25!

implying that the AFM cannot be excited in a nonmagne
semi-infinite stack by a normally incident plane wave, i.
the incident angle must be oblique.

Conditions~21! and~25! may not be necessary in the ca
of nonreciprocal magnetic stacks~see the details in Ref
@15#!. But as we mentioned earlier, at frequencies ab
1012 Hz, the nonreciprocal effects in common noncondu
ing materials are negligible. Therefore, in order to have
robust AFM regime in the infrared or optical frequen
range, we must satisfy both requirements~21! and ~25!, re-
gardless of whether or not nonreciprocal magnetic mater
are involved.

As soon as the above conditions are met, one can alw
achieve the AFM regime at any desirable frequencyv within
a certain frequency rangeDv. The frequency rangeDv is
determined by the stack geometry and the dielectric ma
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als used, while a specific value ofv within the range can be
selected by the directionnW of the light incidence.

B. Periodic stack with two layers in unit cell

The simplest and the most practical example of a perio
stack supporting the axial spectral asymmetry~17! and,
thereby, the AFM regime is shown in Fig. 2. It is made up
anisotropicA layers alternated with isotropicB layers. The
respective dielectric permittivity tensors are

«̂A5F «xx 0 «xz

0 «yy 0

«xz 0 «zz

G , «̂B5F «B 0 0

0 «B 0

0 0 «B

G . ~26!

For simplicity, we assume

m̂A5m̂B5 Î . ~27!

The stack in Fig. 2 has the monoclinic symmetry

2y /my ~28!

with the mirror planemy normal to they axis. Such a sym-
metry is compatible with the necessary condition~21! for the
AFM existence. But as we will see below, symmetry~28!

imposes additional constraints on the directionnW of the inci-
dent wave propagation.

In Fig. 9 we show the axial dispersion relationv(k) of
this periodic array, computed for four different direction
9-7
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(nx ,ny) of incident wave propagation. These four cas
cover all the possibilities, different in terms of symmetry.

In case ~a! of normal incidence, whennx5ny50, the
dispersion relation is axially symmetric, as must be the c
with any reciprocal periodic stratified medium@see the ex-
planation after Eq.~24!#.

In the case~b!, whennx50 andnyÞ0, the two necessary
conditions~21! and~25! for the axial spectral asymmetry ar
met. Yet, those conditions prove not to be sufficient. Inde
if nx50, either of the symmetry operations

2y and my8[my3R ~29!

imposes the relation

v~0,ky ,k!5v~0,ky ,2k!, ~30!

which implies the axial spectral symmetry. Neither station
inflection point, nor AFM can occur in this case.

In case~c!, whennxÞ0 andny50, the situation is more
complicated. The quasimomentumkW lies now in the x-z
plane, which coincides with the mirror planemy . Therefore,
every Bloch eigenmodeCkW(z) can be classified as a pure T
or pure TM mode, depending on theCkW(z) parity with re-
spect to the mirror reflectionmy :

for TE mode myCkW~z!52CkW~z!;

for TM mode myCkW~z!5CkW~z!. ~31!

The TE modes have axially symmetric dispersion relation

v~kx,0,k!5v~kx,0,2k!. ~32!

Indeed, the component«xz of the dielectric tensor«̂A does
not affect the TE modes, because in this case the ele
componentE(r ,t) of the electromagnetic field is parallel t
they axis. As a consequence, the axial dispersion relation
the TE spectral branches is similar to that of the isotro
case with«xz50, where it is always symmetric. By contras
for the TM modes we haveE(r ,t)'y. Therefore, the TM
modes are affected by«xz and display axially asymmetric
dispersion relation

v~kx,0,k!Þv~kx,0,2k!, ~33!

as seen in Fig. 9~c!. We wish to remark, though, that equali
~32! cannot be derived from symmetry arguments only. T
axial spectral symmetry of the TE modes is not exact a
relies on approximation~27! for the magnetic permeability
of the A layers. On the other hand, the fact that the spec
branches have different parity~31! with respect to the sym
metry operationmy implies that none of the branches ca
develop a stationary inflection point@see Eq.~83! and expla-
nations thereafter#. Thus, in the caseny50, in spite of the
axial spectral asymmetry, the AFM regime cannot occur
ther.

Finally, in the general case~d!, whennxÞ0 andnyÞ0,
all the spectral branches display property~17! of the axial
03660
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spectral asymmetry. In addition, the Bloch eigenmodes n
are of the same symmetry@23#—neither TE, nor TM. This is
exactly the case when the AFM regime can be achieve
some frequencies by proper choice of the incident angle.
instance, if we impose the equalitynx5 ny and change the
incident angle only, it turns out that every single spect
branch at some point develops a stationary inflection po
~16! and, thereby, displays the AFM at the respective f
quency. If we want the AFM at a specified frequencyv0,
then we will have to adjust bothnx andny .

III. ELECTRODYNAMICS OF THE AXIALLY
FROZEN MODE

A. Reduced Maxwell equations

We start with the classical Maxwell equations for tim
harmonic fields in nonconducting media

“3E~rW !5 i
v

c
B~rW !, “3H~rW !52 i

v

c
D~rW !, ~34!

where

D~rW !5 «̂~rW !E~rW !, B~rW !5m̂~rW !H~rW !. ~35!

In a lossless dielectric medium, the material tensors«̂(rW) and
m̂(rW) are Hermitian. In a stratified medium, the tensors«̂(rW)
andm̂(rW) depend on a single Cartesian coordinatez, and the
Maxwell equations~34! can be recast as

“3E~rW !5 i
v

c
m̂~z!H~rW !, “3H~rW !52 i

v

c
«̂~z!E~rW !.

~36!

Solutions for Eq.~36! are sought in the following form:

E~rW !5ei (kxx1kyy)EW ~z!, H~rW !5ei (kxx1kyy)HW ~z!. ~37!

Substitution~37! transforms the system of six linear equatio
~36! into a system of four linear differential equations

]zC~z!5 i
v

c
M ~z!C~z!, C~z!5F Ex~z!

Ey~z!

Hx~z!

Hy~z!

G . ~38!

The explicit expression for the Maxwell operatorM (z) is

M ~z!5FM11 M12

M21 M22
G , ~39!

where

M115F 2
«xz*

«zz
nx2

myz

mzz
ny S 2

«yz*

«zz
1

myz

mzz
Dnx

2S «xz*

«zz
2

mxz

mzz
Dny 2

«yz*

«zz
ny2

mxz

mzz
nx

G ,
9-8
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M225F 2
«yz

«zz
ny2

mxz*

mzz
nx S «yz

«zz
2

myz*

mzz
Dnx

S «xz

«zz
2

mxz*

mzz
Dny 2

«xz

«zz
nx2

myz*

mzz
ny

G ,

M125F mxy* 2
mxz* myz

mzz
1

nxny

«zz
myy2

myzmyz*

mzz
2

nx
2

«zz

2mxx1
mxzmxz*

mzz
1

ny
2

«zz
2mxy1

mxzmyz*

mzz
2

nxny

«zz

G ,

M215F 2«xy* 1
«xz* «yz

«zz
2

nxny

mzz
2«yy1

«yz«yz*

«zz
1

nx
2

mzz

«xx2
«xz«xz*

«zz
2

ny
2

mzz
«xy2

«xz«yz*

«zz
1

nxny

mzz

G .

The Cartesian components of the material tensors«̂ and m̂
are functions ofz and ~in dispersive media! v. The reduced
Maxwell equation~38! should be complemented with th
following expressions for thez components of the fields:

Ez5~2nxHy1nyHx2«13* Ex2«23* Ey!«zz
21 ,

Hz5~nxEy2nyEx2m13* Hx2m23* Hy!mzz
21 , ~40!

where (nx ,ny) are defined in Eq.~12!.
Notice that in the case of normal incidence, the Maxw

operator is drastically simplified

M115M2250 for nx5ny50. ~41!

This is the case we dealt with in Ref.@16# when considering
the phenomenon of electromagnetic unidirectionality in n
reciprocal magnetic photonic crystals. By contrast, the ob
tive of this section is to show how the termsM11 andM22,
occurring only in the case of oblique incidence@24#, can lead
to the phenomenon of AFM, regardless of whether or not
nonreciprocal effects are present.

Importantly, the 434 matrix M (z) in Eq. ~39! has the
property ofJ Hermitivity defined as

~JM!†5JM, ~42!

where

J5J215F 0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

G . ~43!

Different versions of the reduced Maxwell equation~38!
can be found in the extensive literature on electrodynam
of stratified media~see, for example, Refs.@17–19#, and ref-
erences therein!. For more detailed studies ofJ-Hermitian
andJ-unitary operators see Ref.@20#.
03660
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B. The transfer matrix

The Cauchy problem

]zC~z!5 i
v

c
M ~z!C~z!, C~z0!5C0 ~44!

for the reduced Maxwell equation~38! has a unique solution

C~z!5T~z,z0!C~z0!, ~45!

where the 434 matrix T(z,z0) is so-calledtransfer matrix.
From definition~45! of the transfer matrix it follows that

T~z,z0!5T~z,z8!T~z8,z0!, T~z,z0!5T21~z0 ,z!,

T~z,z!5I . ~46!

The matrix T(z,z0) is uniquely defined by the following
Cauchy problem:

]zT~z,z0!5 i
v

c
M ~z!T~z,z0!, T~z,z!5I . ~47!

Equation~47!, together withJ-Hermitivity ~42! of the Max-
well operatorM (z), implies that the matrixT(z,z0) is J
unitarity, i.e.,

T†~z,z0!5JT21~z,z0!J ~48!

~see the proof in Appendix A!. The J-unitarity ~48! of the
transfer matrix imposes strong constraints on its eigenva
@see Eq.~61!#. It also implies that

udetT~z,z0!u51. ~49!

The transfer matrixTS of a stack of layers is a sequenti
product of the transfer matricesTm of the constitutive layers

TS5)
m

Tm . ~50!

If the individual layers are homogeneous, the correspond
single-layer transfer matricesTm are explicitly expressed in
terms of the respective Maxwell operatorsMm :

Tm5exp~ izmMm!, ~51!

wherezm is the thickness of themth layer. The explicit ex-
pression forMm is given by Eq.~39!. Thus, formula~50!,
together with Eqs.~51! and~39!, gives us an explicit expres
sion for the transfer matrixTS of an arbitrary stack of aniso
tropic dielectric layers.TS is a function of~i! the material
tensors«̂ and m̂ in each layer of the stack,~ii ! the layer
thicknesses,~iii ! the frequencyv, and ~iv! the tangential
components (kx ,ky)5(nxv/c,nyv/c) of the wave vector.

Consider the important particular case of normal wa
propagation. Using Eq.~51! and the explicit expression~39!
for the Maxwell operator, one can prove that

det~TS!51 for nx5ny50. ~52!
9-9
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Additional information related to the transfer matrix fo
malism can be found in Refs.@17–19# and references therein

C. Periodic arrays: Bloch eigenmodes

In a periodic layered structure, all material tensors, alo
with the J-Hermitian matrixM (z) in Eq. ~38!, are periodic
functions ofz;

M ~z1L !5M ~z!, ~53!

whereL is the length of a primitive cell of the periodic stac
By definition, Bloch solutionsCk(z) of the reduced Maxwell
equation~38! with the periodic operatorM (z) satisfy

Ck~z1L !5eikLCk~z!. ~54!

Definition ~45! of the T matrix together with Eq.~54! give

Ck~z1L !5T~z1L,z!Ck~z!5eikLCk~z!. ~55!

Introducing the transfer matrix of a primitive cell

TL5T~L,0!, ~56!

we have from Eq.~55!

TLFk5eikLFk , ~57!

where Fk5Ck(0). Thus, the eigenvectors of the transf
matrix TL of the unit cell are uniquely related to the eige
modes of the reduced Maxwell equation~38! through the
relations

Fk1
5Ck1

~0!, Fk2
5Ck2

~0!,

Fk3
5Ck3

~0!, Fk4
5Ck4

~0!. ~58!

The respective four eigenvalues

Xi5eikiL, i 51,2,3,4 ~59!

of TL are the roots of the characteristic equation

F~X!50, ~60!

where F(X)5det(TL2XÎ)5X41P3X31P2X21P1X11.
For any givenv and (kx ,ky), the characteristic equatio
defines a set of four values$X1 ,X2 ,X3 ,X4%, or equivalently,
$k1 ,k2 ,k3 ,k4%. Real k correspond to propagating Bloc
waves ~extended modes!, while complex k correspond to
evanescent modes. Evanescent modes are relevant nea
tonic crystal boundaries and other structural irregularities

The J-unitarity ~48! of TL imposes the following restric
tion on eigenvalues~59! for any givenv and (kx ,ky):

$ki%[$ki* %, i 51,2,3,4. ~61!

In view of relation~61!, one has to consider three differe
situations. The first possibility

k1[k1* , k2[k2* , k3[k3* , k4[k4* ~62!
03660
g

ho-

relates to the case of all four Bloch eigenmodes being
tended. The second possibility

k15k1* , k25k2* , k35k4* , ~63!

wherek3Þk3* , k4Þk4* , relates to the case of two extende
and two evanescent modes. The last possibility

k15k2* , k35k4* , ~64!

where k1Þk1* , k2Þk2* , k3Þk3* , k4Þk4* , relates the case
of a frequency gap, when all four Bloch eigenmodes
evanescent.

Observe that the relation

k11k21k31k4[0,

valid in the case of normal incidence~see Refs.@15,16#!,
may not apply now.

Axial spectral symmetry

Assume that the transfer matrixTL is similar to its inverse

TL5U21TL
21U, ~65!

whereU is an invertible 434 matrix. This assumption to
gether with property~48! of J unitarity imply the similarity
of TL andTL

†

TL5V21TL
†V, ~66!

whereV5JU. This relation imposes additional restriction
on eigenvalues~59! for a given frequencyv and given
(kx ,ky)

$ki%[$2ki%, i 51,2,3,4. ~67!

Relation ~67! is referred to as the axial spectral symmet
because in terms of the corresponding axial dispersion r
tion, it implies equality~18! for every spectral branch.

If the sufficient condition~65! for the axial spectral sym-
metry is not in place, then we can have for a givenv and
(kx ,ky)

$ki%Þ$2ki%, i 51,2,3,4 ~68!

which implies the axial spectral asymmetry~17!.

D. Stationary inflection point

The coefficients of the characteristic polynomialF(X) in
Eq. ~60! are functions ofv and (kx ,ky). Let F0(X) be the
characteristic polynomial at the stationary inflection po
~16!, wherev5v0 and (kx ,ky)5(k0x ,k0y). The stationary
inflection point~16! can also be defined as follows

F0~X!50, F08~X!50, F09~X!50, F0-~X!Þ0.
~69!

This relation requires the respective value ofX05exp(ik0L)
to be a triple root of the characteristic polynomialF0(X)
implying
9-10
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F0~X!5~X2X1!~X2X0!350. ~70!

A small deviation of the frequencyv from its critical
valuev0 changes the coefficients of the characteristic po
nomial and removes the triple degeneracy of the solutionX0,

X2X0'261/3S ]F0 /]v

]3F0 /]X3D 1/3

~v2v0!1/3j,

j51,e2p i /3,e22p i /3 ~71!

or, in terms of the axial quasimomentumk,

k2k0'61/3S v2v0

v0-
D 1/3

j, j51,e2p i /3,e22p i /3, ~72!

where

v0-5S ]3v

]k3 D
kx ,ky

U
kW5kW0

.0. ~73!

The three solutions~72! can also be rearranged as

kex'k0161/3~v0-!21/3~v2v0!1/3,

kev'k01
1

2
~6!1/3~v0-!21/3~v2v0!1/3

1 i
A3

2
61/3~v0-!21/3uv2v0u1/3,

kEV'k01
1

2
~6!1/3~v0-!21/3~v2v0!1/3

2 i
A3

2
61/3~v0-!21/3uv2v0u1/3. ~74!

The realkex in Eq. ~74! relates to the extended modeCex(z),
with uz50 at v5v0. The other two solutions,kev andkEV

5kev* , correspond to a pair of evanescent modesCev(z) and
CEV(z) with positive and negative infinitesimally sma
imaginary parts, respectively. Those modes are truly eva
cent ~i.e., have ImkÞ0) only if vÞv0, but it does not
mean that atv5v0 the eigenmodesCev(z) and CEV(z)
become extended. In what follows we will take a closer lo
at this problem.

Eigenmodes at the frequency of AFM

Consider the vicinity of stationary inflection point~13!.
As long asvÞv0, the four eigenvectors~58! of the transfer
matrix TL comprise two extended and two evanescent Blo
solutions. One of the extended modes~say,Fk1

) corresponds

to the nondegenerate real rootX15eik1L of the characteristic
equation~60!. This mode has negative axial group veloc
uz(k1),0 and, therefore, is of no interest for us. The oth
three eigenvectors ofTL correspond to three nearly degene
ate roots~71!. As v approachesv0, these three eigenvalue
03660
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become degenerate, while the respective three eigenve
Fk2

, Fk3
, andFk4

become collinear,

Fk2
→a1Fk0

, Fk3
→a2Fk0

, Fk4
→a3Fk0

,

as v→v0 . ~75!

The latter important feature relates to the fact that atv
5v0 the matrixTL has a nontrivial Jordan canonical form

U21TLU5F X1 0 0 0

0 X0 1 0

0 0 X0 1

0 0 0 X0

G , ~76!

and, therefore, cannot be diagonalized. It is shown rigorou
in Ref. @16# that the very fact that theTL eigenvalues display
singularity~71! implies that atv5v0 the matrixTL has the
canonical form~76!. In line with Eq. ~75!, the matrix TL
from Eq. ~76! has only two~not four! eigenvectors:~1! Fk1

5Ck1
(0), corresponding to the nondegenerate rootX1 and

relating to the extended mode withuz,0; ~2! Fk0

5Ck0
(0), corresponding to the triple rootX0 and related to

the AFM.
The other two solutions of the Maxwell equation~38! at

v5v0 are general Floquet eigenmodes, which do not red
to the canonical Bloch form~54!. Yet, they can be related to
Ck0

(z). Indeed, following the standard procedure~see, for
example, Refs.@21,22#!, consider an extended Bloch solutio
Ck(z) of the reduced Maxwell equation~38!

LCk~z!50, ~77!

whereL5]z2 i (v/c)M (z), where both operatorsM (z) and
L (z) are functions ofv and (kx ,ky). Assume now that the
axial dispersion relationv(k) has a stationary inflection
point ~13! at k5k0. Differentiating Eq.~77! with respect tok
at constant (kx ,ky) gives, with consideration for Eq.~13!,

L]kCk~z!50, L]kk
2 Ck~z!50, at k5k0 .

This implies that atk5k0, both functions

C01~z!5]kCk~z!uk5k0
and C02~z!5]kk

2 Ck~z!uk5k0

~78!

are also eigenmodes of the reduced Maxwell equation av
5v0. RepresentingCk(z) in the form

Ck~z!5ck~z!eikz, ~79!

where ck(z1L)5ck(L), Im k50, and substituting Eq
~79! into Eq. ~78! we get

C01~z!5C̄k0
~z!1 izCk0

~z!, ~80!

C02~z!5C̄k0
8 ~z!1 izC̄k0

~z!2z2Ck0
~z!, ~81!
9-11
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where

C̄k0
~z!5@]kck~z!#k5k0

eik0z

and

C̄k0
8 ~z!5@]kk

2 ck~z!#k5k0
eik0z

are auxiliary Bloch functions~not eigenmodes!.
To summarize, at the frequencyv0 of AFM, there are four

solutions for the reduced Maxwell equation~38!,

Ck1
~z!, Ck0

~z!, C01~z!, C02~z!. ~82!

The first two solutions from Eq.~82! are extended Bloch
eigenmodes withuz,0 anduz50, respectively. The othe
two solutions diverge as the first and the second power oz,
respectively, they are referred to as general~non-Bloch! Flo-
quet modes.

Deviation of the frequencyv from v0 removes the triple
degeneracy~76! of the matrixTL , as seen from Eq.~71!. The
modified matrixTL can now be reduced to a diagonal for
with the set~58! of four eigenvectors comprising two ex
tended and two evanescent Bloch solutions.

E. Symmetry considerations

In Sec. II, we discussed the relation between the sym
try of the axial dispersion relation of a periodic stack, and
phenomenon of AFM. At this point we can prove that inde
the axial spectral asymmetry~17! is a necessary condition fo
the occurrence of the stationary inflection point and for
AFM associated with such a point. As we have seen earlie
this section, the stationary inflection point relates to a tri
root of the characteristic polynomialF(X) from Eq. ~60!.
SinceF(X) is a polynomial of the fourth degree, it cann
have a symmetric pair of triple roots, that would have be
the case for axially symmetric dispersion relation. Hen
only asymmetric axial dispersion relationv(k) can display a
stationary inflection point~13! or, equivalently, Eq.~16!, as
shown in Fig. 4~b!. In this respect, the situation with th
AFM is somewhat similar to that of the frozen mode in un
directional magnetic photonic crystals@16#. The difference
lies in the physical nature of the phenomenon. The b
spectral asymmetry~24! leading to the effect of electromag
netic unidirectionality, essentially requires the presence
nonreciprocal magnetic materials. By contrast, the a
spectral asymmetry~17! along with the AFM regime can be
realized in perfectly reciprocal periodic dielectric stacks w
symmetric bulk dispersion relation~22!. On the other hand
the axial spectral asymmetry essentially requires an obli
light incidence, which is not needed for the bulk spect
asymmetry.

Another important symmetry consideration is that in t
vicinity of the stationary inflection point~13!, all four Bloch
eigenmodes~58! must have the same symmetry, whic
means that all of them must belong to the same o
dimensional irreducible representation of the Bloch wa
vector group. This condition is certainly met when the dire
tion defined by (nx ,ny) is not special in terms of symmetry
Let us see what happens if the above condition is no
03660
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place. Consider situation~31!, when at any given frequenc
v and fixed (nx ,ny)5(nx,0), two of the Bloch eigenmode
are TE modes and the other two are TM modes. Note,
TE and TM modes belong todifferentone-dimensional rep-
resentations of the Bloch wave vector group. In such a c
the transfer matrixTL can be reduced to the block-diagon
form

TL5F T11 T12 0 0

T21 T22 0 0

0 0 T33 T34

0 0 T43 T44

G .

The respective characteristic polynomialF(X) degenerates
into

F~X!5FTE~X!FTM~X!, ~83!

whereFTE(X) and FTM(X) are independent second degr
polynomials describing the TE and TM spectral branch
respectively. Obviously, in such a situation, the transfer m
trix cannot have the nontrivial canonical form~76!, and the
respective axial dispersion relation cannot develop a stat
ary inflection point~69!, regardless of whether or not th
axial spectral asymmetry is in place.

IV. THE AFM REGIME IN A SEMI-INFINITE STACK

A. Boundary conditions

In vacuum~to the left of semi-infinite slab in Fig. 1! the
electromagnetic fieldCV(z) is a superposition of the inci
dent and reflected waves

CV~z!5C I~z!1CR~z!, at z,0. ~84!

At the slab boundary we have

CV~0!5C I~0!1CR~0!5F I1FR , ~85!

where

F I5F EI ,x

EI ,y

HI ,x

HI ,y

G5F EI ,x

EI ,y

2EI ,xnxnynz
212EI ,y~12nx

2!nz
21

EI ,x~12ny
2!nz

211EI ,ynxnynz
21

G ,

FR5F ER,x

ER,y

HR,x

HR,y

G5F ER,x

ER,y

ER,xnxnynz
211ER,y~12nx

2!nz
21

2ER,x~12ny
2!nz

212ER,ynxnynz
21

G .

~86!

The complex vectorsEW I ,HW I and EW R ,HW R are related to the
actual electromagnetic field componentsEI ,HI and ER ,HR
as

EI5eiv/c(nxx1nyy)EW I~z!, HI5eiv/c(nxx1nyy)HW I ,
9-12
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ER5eiv/c(nxx1nyy)EW R~z!, HR5eiv/c(nxx1nyy)HW R .

The transmitted waveCT(z) inside the semi-infinite slab
is a superposition of two Bloch eigenmodes@25#,

CT~z!5C1~z!1C2~z!, at z.0. ~87!

The eigenmodesC1(z) and C2(z) can be both extende
~with ux.0), one extended and one evanescent~with ux
.0 and Imk.0, respectively!, or both evanescent~with
Im k.0), depending on which of the three cases~62!, ~63!,
or ~64! we are dealing with. In particular, in the vicinity o
the AFM @e.g., the vicinity ofv0 in Fig. 4~b!#, we always
have situation~63!. Therefore, in the vicinity of AFM,CT(z)
is a superposition of the extended eigenmodeCex(z) with
the group velocityuz.0, and the evanescent modeCev(z)
with Im k.0

CT~z!5Cex~z!1Cev~z!, at z.0. ~88!

The asymptotic expressions for the respective wave vec
kex andkev in the vicinity of AFM are given in Eq.~74!.

When the frequencyv exactly coincides with the fre
quencyv0 of the AFM, representation~88! for CT(z) is not
valid. In such a case, according to Eq.~74!, there are no
evanescent modes at all. It turns out that atv5v0, the elec-
tromagnetic field inside the slab is a superposition of
extended modeCk0

(z) and the~non-Bloch! Floquet eigen-

modeC01(z) from Eq. ~80!

CT~z!5Ck0
~z!1C01~z!, at v5v0 and z.0.

~89!

Since the extended eigenmodeCk0
(z) has zero axial group

velocity uz , it does not contribute to the axial energy flu
Sz . By contrast, the divergent non-Bloch contributio
C01(z) is associated with the finite axial energy fluxSz
.0, although the notion of group velocity does not app
here. A detailed analysis is carried out below.

Knowing the eigenmodes inside the slab and using
standard electromagnetic boundary conditions

FT5F I1FR , ~90!

whereF5C(0), one canexpress the amplitude and comp
sition of the transmitted waveCT and reflected waveCR , in
terms of the amplitude and polarization of the incident wa
C I . This gives us the transmittance and reflectance co
cients~2! of the semi-infinite slab, as well as the electroma
netic field distributionCT(z) inside the slab, as functions o
the incident wave polarization, the directionnW of incidence,
and the frequencyv.

B. Field amplitude inside the semi-infinite slab

In what follows we assume thatv can be arbitrarily close
but not equal tov0, unless otherwise is explicitly stated
This will allow us to treat the transmitted waveCT(z) as a
superposition~88! of one extended and one evanesc
03660
rs

e
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mode. Since evanescent modes do not transfer energy in
z direction, the extended mode is solely responsible for
axial energy fluxSz

Sz~CT!5Sz~Cex!. ~91!

According to Eq.~B3!, Sz does not depend onz and can be
expressed in terms of the semi-infinite slab transmittanct
from Eq. ~2!

Sz5t~SW I !z5tSI , ~92!

whereSI5(SW I)z is the axial energy flux of the incident wave
which is set to be unity.

The energy densityWex associated with the extende
modeCex(z) can be expressed in terms of the axial comp
nent uz of its group velocity and the axial compone
Sz(Cex) of the respective energy density flux

Wex5uz
21Sz~Cex!5S ]v

]k D
kx ,ky

21

tSI . ~93!

In close proximity of the AFM frequencyv0, we have, ac-
cording to Eq.~13!,

v2v0'
1

6
v0-~k2k0!3, ~94!

where v0- is defined in Eq.~73!. Differentiating Eq.~94!
with respect tok

S ]v

]k D
kx ,ky

'
1

2
v0-~k2k0!2'

62/3

2
~v0-!1/3~v2v0!2/3,

~95!

and plugging Eq.~95! into Eq. ~93! yields

Wex'
2

62/3
tSI~v0-!21/3~v2v0!22/3, ~96!

where the transmittancet depends on the incident wave po
larization, the frequencyv, and the direction of incidence
(nx ,ny)5(ckx /v,cky /v). Formula~96! implies that the en-
ergy densityWex and, therefore, the amplitudeuCex(z)u
5uFexu of the extended mode inside the stack diverge in
vicinity of the AFM regime

uFexu;AWex;AtSI~v0-!21/6uv2v0u21/3 as v→v0 .

~97!

The divergence of the extended mode amplitudeuFexu
imposes the similar behavior on the amplitudeuCev(0)u
5uFevu of the evanescent mode at the slab boundary. Inde
the boundary condition~90! requires that the resulting field
FT5Fex1Fev remains limited to match the sumF I1FR
of the incident and reflected waves. Relation~90! together
with Eq. ~97! imply that there is a destructive interference
the extendedFex and evanescentFev modes at the stack
boundary,
9-13
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Fex'2Fev'KAtSI~v0-!21/6~v2v0!21/3Fk0

as v→v0 , ~98!

HereFk0
is the normalized eigenvector ofTL in Eq. ~76!; K

is a dimensionless parameter. Expression~98! is in compli-
ance with the earlier made statement~75! that the column
vectorsFex andFev become collinear asv→v0.

1. Space distribution of electromagnetic field in the AFM regim

The amplitudeuCex(z)u of the extended Bloch eigenmod
remains constant and equal touFexu from Eq.~97!, while the
amplitude of the evanescent contribution to the result
field decays as

uCev~z!u5uFevue2z Im kev, ~99!

where Imkev' A3/261/3(v0-)21/3uv2v0u1/3. At z
@(Im kev)21, the destructive interference~98! of the ex-
tended and evanescent modes becomes ineffective, an
only remaining contribution toCT(z) is the extended mode
Cex(z) with huge and independent ofz amplitude~97!. This
situation is graphically demonstrated in Fig. 5.

Let us see what happens when the frequencyv tends to
its critical valuev0. According to Eqs.~57! and ~88!, at z
5NL, N50,1,2, . . . , the resulting fieldCT(z) inside the
slab can be represented as

CT~z!5Fexe
izkex1Feveizkev. ~100!

Substitutingkex and kev from Eq. ~74! in Eq. ~100!, and
taking into account the asymptotic relation~98!, we have

CT~z!'FFT1zKAtSI

v0-
61/3

3S i

2
1

A3

2

v2v0

uv2v0u DFk0Geizk0 as v→v0 .

~101!

Although this asymptotic formula is valid only forz5NL,
N50,1,2, . . . , it is obviously consistent with expressio
~80! for the non-Bloch solutionC10(z) of the Maxwell equa-
tion ~38! at v5v0.

2. The role of the incident wave polarization

The incident wave polarization affects the relative con
butions of the extended and evanescent components to
resulting fieldCT(z) in Eq. ~88!. In addition, it also affects
the overall transmittance~2!. The situation here is similar to
that of the normal incidence considered in Ref.@16#. There
are two special cases, merging into a single one asv→v0.
The first one occurs when the elliptic polarization of t
incident wave is chosen so that it produces a single exten
eigenmodeCex(z) inside the slab@no evanescent contribu
tion to CT(z)]. In this case,CT(z) reduces toCex(z), and
its amplitudeuCT(z)u remains limited and independent ofz.
03660
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As v approachesv0, the respective transmittancet vanishes
in this case, and there is no AFM regime. The second spe
case is when the elliptic polarization of the incident wave
chosen so that it produces a single evanescent eigenm
Cev(z) inside the slab@no extended contribution toCT(z)].
In such a case,CT(z) reduces toCev(z), and the amplitude
uCT(z)u decays exponentially withz in accordance with Eq.
~99!. The respective transmittancet in this latter case is zero
regardless of the frequencyv, because evanescent modes
not transfer energy. Importantly, asv approachesv0, the
polarizations of the incident wave that produce either a s
extended or a sole evanescent mode become indistingu
able, in accordance with Eq.~75!. In the vicinity of the AFM
regime, the maximal transmittancet is achieved for the in-
cident wave polarization orthogonal to that exciting a sin
extended or evanescent eigenmode inside the semi-infi
stack.

C. Tangential energy flux

So far we have been focusing on the axial electromagn
field distribution, as well as the axial energy fluxSz inside
the semi-infinite slab. At the same time, in and near the AF
regime, the overwhelmingly stronger energy flux occurs
the tangential direction. Let us take a closer look at t
problem.

The axial energy fluxSz is exclusively provided by the
extended contributionCex(z) to the resulting fieldCT(z),
because the evanescent modeCev(z) does not contribute to
Sz . Neither uCexu nor Sz depends onz @see Eq.~B3!#. By
contrast, both the extended and the evanescent modes d
mine the tangential energy fluxSW t(z). Besides, according to
Eq. ~B3!, the tangential energy flux depends onz. Far from
the AFM regime, the role of the evanescent mode is ins
nificant, becauseCev(z) is appreciable only in a narrow re
gion close to the slab boundary. But the situation appe
quite different near the AFM frequency. Indeed, according
Eq. ~99!, the imaginary part of the respective Bloch wa
vector kev becomes infinitesimally small near the critic
point. As a consequence, the evanescent mode extends
inside the slab, so does its role in formation ofSW t(z). The
tangential energy fluxSW t(z) as function ofz can be directly
obtained using formula~B5! and the explicit expression fo
CT(z)5Cex(z)1Cev(z). Although the explicit expression
for SW t(z) is rather complicated and cumbersome, it has v
simple and transparent structure. Indeed, the tangential
ergy flux can be represented in the following form:

SW t~z!5uW tW~z!,

where the tangential group velocityuW t behaves regularly a
v5v0. Therefore, the magnitude and the space distribut
of the tangential energy fluxSW t(z) in and near the AFM
regime literally coincide with that of the electromagnetic e
ergy densityW(z), which is proportional touCT(z)u2. A
typical picture of that is shown in Fig. 5~a!.
9-14
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V. SUMMARY

As we have seen in the preceding section, a distinc
characteristic of the AFM regime is that the incident mon
chromatic radiation turns into a very unusual grazing wa
inside the slab, as shown schematically in Figs. 3 and
Such a grazing wave is significantly different from that o
curring in the vicinity of the total internal reflection regim
where the transmitted wave also propagates along the in
face. The most obvious difference is that near the regime
total internal reflection, the reflectivity approaches un
which implies that the intensity of the transmitted~refracted!
wave vanishes. By contrast, in the case of AFM the lig
reflection from the interface can be small, as shown in
example in Fig. 4~a!. Thus, in the AFM case, a significan
portion of the incident light gets converted into the grazi
wave ~the AFM! with huge amplitude, compared to that
the incident wave. For this reason, the AFM regime can be
great utility in many applications.

Another distinctive feature of the AFM regime relates
the field distribution inside the periodic medium. The ele
tromagnetic field of the AFM can be approximated by a
vergent Floquet eigenmodeC10(z) from Eq. ~80!, whose
magnitudeuC10(z)u2 increases asz2, until nonlinear effects
or other limiting factors come into play. In fact, the fie
amplitude inside the slab can exceed the amplitude of
incident plane wave by several orders of magnitude, depe
ing on the quality of the periodic array, the actual number
the layers, and the width of the incident light beam.

Looking at thez component of light group velocity an
energy flux, we see a dramatic slowdown of light in t
vicinity of the AFM regime, with all possible practical appl
cations extensively discussed in the literature~see, for ex-
ample, Refs.@9–12#, and references therein!. In principle,
there can be a situation when the tangential compon
(ux ,uy) of the group velocity also vanish in the AFM re
gime, along with the axial componentuz . Although we did
not try to achieve such a situation in our numerical expe
ments, it is not prohibited and might occur if the physic
parameters of the periodic array are chosen properly. In s
a case, the AFM regime reduces to its particular case—
frozen mode regime withuW 50 inside the periodic medium
This regime would be similar to that considered in Ref.@16#,
with one important difference: it is not related to the ma
netic unidirectionality and, hence, there is no need to inc
porate nonreciprocal magnetic layers in the periodic ar
The latter circumstances allow to realize the frozen mo
regime at the infrared, optical, and even UV frequency ran
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APPENDIX A: J UNITARITY
OF THE TRANSFER MATRIX

Let n3n matrix T(z) satisfy the following Cauchy prob
lem:
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]zT~z!5 iM ~z!T~z!, T~0!5I ~A1!

whereM (z) is a J-Hermitian matrix. Let us prove that th
unique solutionT(z) for Eq. ~A1! is a J-unitary operator,

T†~z!5JT21~z!J21. ~A2!

To prove it, notice that Eq.~A1! implies

]xT
†~z!52T†~x!iA~z!J, T†~0!5I , ~A3!

whereA(z)5JM(z) is a Hermitian matrix. Now, let us find
the respective Cauchy problem forT21(z). Since

]z@T~z!T21~z!#505T~z!@]zT
21~z!#1@]zT~z!#T21~z!,

we have

]zT
21~z!52T21~z!@]zT~z!#T21~z!,

which in a combination with Eq.~A1! yields

]zT
21~z!52T21~z!iJA~z!, T21~0!5I . ~A4!

Finally, multiplying both sides of equality~A4! by J and
using the fact thatJ25I , we get the following Cauchy prob
lem for JT21(z)J:

]z@JT21~z!J#52@JT21~z!J# iA~z!J, JT21~0!J5I

~A5!

which is identical to that forT†(z) from Eq.~A3!. Since both
Cauchy problems~A3! and~A5! have unique solutions, thei
similarity implies relation~A2! of J unitarity.

APPENDIX B: ENERGY DENSITY FLUX

The real-valued Poynting vector is defined by

S~rW !5
c

8p
Re@E* ~rW !3H~rW !#. ~B1!

Substituting representation~37! for E(rW) and H(rW) in Eq.
~B1! yields

S~rW !5S~z!5
c

8p
Re@EW * ~z!3HW ~z!# ~B2!

implying that none of the three Cartesian components of
energy density fluxS depends on the transverse coordinatex
and y. Energy conservation argument implies that the co
ponentSz of the energy flux does not depend on the coor
natez either, while the transverse componentsSx andSy may
depend onz. Indeed, in the case of steady-state oscillatio
in a lossless medium we have, with consideration for E
~B2!
9-15
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“•S5]zSz~z!50,

which together with Eq.~B2! gives

Sz~rW !5Sz5const, Sx~rW !5Sx~z!, Sy~rW !5Sy~z!.
~B3!

The explicit expression for thez component of the energ
flux ~B2! is

Sz5
1

2
@Ex* Hy2Ey* Hx1ExHy* 2EyHx* #5

1

2
~C,JC!.

~B4!

The tangential components of the energy flux can also
expressed in terms of the column vectorC(z) from Eq.~38!.
Using expressions~40! for Ez andHz and eliminating these
field components fromS(z) in Eq. ~B2! yields

Sx5
1

2
~C,ĜxC!, Sy5

1

2
~C,ĜyC!, ~B5!

whereGx andGy are Hermitian matrices,
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Both Gx andGy are functions of the Cartesian coordinatez,
frequencyv, and the directionnW of incident wave propaga
tion.
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